• Title/Summary/Keyword: Period Runoff

Search Result 425, Processing Time 0.03 seconds

Evaluation the Climatic Influence during El Nino and La Nina Periods of Aridity Index, Precipitation Effectiveness and Runoff in Basins (이상기후 (엘니뇨, 라니냐) 기간의 유역별 건조지수, 강수효율, 유출량의 영향성 평가)

  • Lee, Jun-Won;Kim, Gwang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.115-125
    • /
    • 2012
  • The comparison between the spatial and temporal variability of aridity index, precipitation effectiveness and runoff during El-Nino and La-Nina periods and that of the normal period was conducted to evaluate the regional impacts of El-Nino, La-Nina in hydrologic variables. Aridity index and precipitation effectiveness were estimated using 59 nationwide weather stations data and runoff data of WAMIS were used. The ratio of the difference between El-Nino, La-Nina year value and that of normal year was analyzed. Temporal variation demonstrated that aridity index, precipitation effectiveness and run-off discharge increase in March, April, August, November, December and decrease in February, June, September, October according to El-Nino effect. Aridity index, precipitation effectiveness and run-off discharge increase in March, May, September and decrease in June, August, November, December according to La-Nina effect. The spatial variation of those variables analyzed for different basins showed that impacts in the Han river basin relatively higher than that of other basins.

Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS (논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Chung, Se-Woong
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

Assessment of Non-point Pollutants and Runoff Characteristics in Urban Area, Korea

  • Park, Jae-Young;Choi, I-Song;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.67-75
    • /
    • 2005
  • The objectives of this study were to understand the runoff characteristics of the non-point sources originating from impervious surfaces and to assess their effect on the aquatic environment in the urban areas. The concentration of pollutants (SS, BOD, COD and T-P) except for T-N showed the highest value in runoff from road, and event mean concentration (EMC) also showed high value from road. The pollutants discharged from road showed a higher concentration in the beginning stage (0 ${\sim}$ 30%) of progressive percentage of rainfall. The contribution percentages of non-point sources by load were 44.9% for SS, 11.2% for BOD, 21.4% for COD, 11.4% for T-N and 8.1% for T-P in the total load of pollutant discharged through sewer. From our results, the road was a significant potential source that deteriorated water quality of the streams and lakes in the vicinity of the urban area during the rain period. Therefore, counter plan is required to reduce pollutant concentration on the road from non-point sources in the urban area. Also, since pollutant concentration in the beginning stage of rainfall was quite high, road cleaning seems to be one of the very useful methods to prevent inflowing of pollutants to the aquatic environment.

A study on the headloss of filter media for treatment of Road Runoff (도로노면 유출수 처리를 위한 여과에서의 여재별 손실수두 특성)

  • Choi, Weon-Suk;Song, Changsoo;Kim, Seog-ku
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • Stormwater runoff from urban road area as non-point source has a tendency of including lots of pollutants at initial rain period. Recently, there are several cases of having installed treatment facilities for reducing pollution discharge from the impervious cover in urban area to prevent watershed environment from getting worse. The filtration type among non-point source treatment systems has been known as one of the most efficient system for treatment of non-point source pollutants. Therefore, various kinds of filter media such as expanded polypropylene(EPP), granular activated carbon, zeolite, perlite, illite, sand, gravel has been developed. This study was conducted to verify performance and hydraulic characteristics of filter media as measures for non-point source. The experiment was carried out to evaluate applicability and variation of 4 kind of most popular filter media(EPP, GAC, Zeolite, Perlite) in headloss with elapsed time and influent flow rate and to obtain data base that could be used to establish management plan for road runoff treatment. In experiment by tap water, it showed that EPP and perlite those are floatable materials showed stable operating performance and lower headloss than the others.

Behaviour Analysis of Irrigation Reservoir Using Open Water Management Program (개방형 물관리 프로그램을 이용한 관개용 저수지의 거동 분석)

  • Kim, Sun-Joo;Kim, Phil-Shik;Lim, Chang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.3-13
    • /
    • 2004
  • For optimal irrigation reservoir operation during flood and normal period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. We developed Open Water Management Program (OWMP) with an open architecture to deal with newly arising upgrade problems for optimal management of irrigation reservoir. And we evaluated the applicability of OWMP to estimate daily runoff from an agricultural watershed including irrigation reservoirs, and analyzed behaviour of irrigation reservoirs as irrigation water requirements considering frequency analysis of reservoir storage and frequency analysis water requirements for effective management of reservoir. When we executed OWMP with data produced from an experimental field, IHP basins, the mean relative errors of application of daily runoff and irrigation water requirement were less than 5%. We also applied OWMP to a Seongju irrigation reservoir to simulate daily runoff, storage and water requirement from 1998 to 2002, and the mean model efficiency between measured and simulated value was 0.76. Our results based on the magnitude of relative errors and model efficiency of the model simulation indicate that the OWMP can be a tool nicely adapted to the effective water management of irrigation reservoir for beneficial water use and flood disaster management.

Analysis of Runoff Reduction Effect and Rainfall Intensity-Duration Time of Permeable Block Facility (투수블록시설의 유출저감효과 분석 및 강우강도-지속시간 관계 분석)

  • Han, Sangyun;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Non-point pollution adversely affects the water system and its influence is increasing. In order to manage such nonpoint source pollution, the government has conducted studies on LID (Low Impact Development) facilities and various efficiency evaluations. In this study, the actual installed permeable block facility among the various LID facilities was analyzed the effluent reduction rate, the residual rainfall analysis, the runoff duration time and the reduction rate of the maximum inflow and outflow for the rainfall runoff control and the results were compared the other facilities. The analysis results show that the reduction efficiency is high in order of impermeable block, filter type permeable block, and clearance type permeable block, and the graph showing the relationship between the rainfall intensity and the runoff duration time is presented. This graph can be helpful in the design of facilities such as the facility capacity selection according to the reproduction period of the permeable block facility similar to this.

Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin (추계학적 기법을 통한 공주지점 유출예측 연구)

  • Ahn, Jung Min;Hur, Young Teck;Hwang, Man Ha;Cheon, Geun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.21-27
    • /
    • 2011
  • When execute runoff forecasting, can not remove perfectly uncertainty of forecasting results. But, reduce uncertainty by various techniques analysis. This study applied various forecasting techniques for runoff prediction's accuracy elevation in Gongju basin. statics techniques is ESP, Period Average & Moving average, Exponential Smoothing, Winters, Auto regressive moving average process. Authoritativeness estimation with results of runoff forecasting by each techniques used MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), RRMSE (Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC (Theil Inequality Coefficient). Result that use MAE, RMSE, RRMSE, MAPE, TIC and confirm improvement effect of runoff forecasting, ESP techniques than the others displayed the best result.

Effect of By-product Gypsum on Soil Erosion at Burned Forest Land (부산물 석고를 이용한 산불피해 지역 토양유실 방지)

  • Kim, Kye-Hoon;Jung, Chang-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.52-59
    • /
    • 2000
  • This study was carried out to find out effect of by-product gypsum on reducing soil erosion at the sloping burned area at Sampo-ri, Gosung-gun in Kangwon-province during the period between June 28 and Sept. 30, 2000. Four experimental plots ($1.2m{\times}10m$) were prepared at the study area with slopes $15^{\circ}{\sim}18^{\circ}$ where forest fire took place twice during last 4 years. Phosphogypsum (PG) was applied to the soils of the 4 plots at the rates of 0 (control), 5, 7.5, and 10 ton/ha, respectively. Amount of rainfall, runoff, and soil loss were measured 7 times during the study. In the beginning, the amounts of runoff and soil loss from the PG treated plots were not different from those from the control plot due to steepness of the plots. However, the difference between the amount of runoff and soil loss from the PG treated plots and those from the control became apparent over time. The effect of PG treatment lasted until at least 870 mm of rainfall. Compared to the cumulative runoff from the control plot, the cumulative runoff from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 7%, 31 %, and 35%, respectively. The cumulative soil loss from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 44%, 53%, and 77% compared to that from the control plot. Strong acidity of PG (pH 2.0~2.5) did not affect the acidity of the soil and runoff.

  • PDF

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment

  • Salim, Imran;Paule-Mercado, Ma. Cristina;Sajjad, Raja Umer;Memon, Sheeraz Ahmed;Lee, Bum-Yeon;Sukhbaatar, Chinzorig;Lee, Chang-Hee
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • Climate change has significantly affected the rainfall characteristics which can influence the pollutant build-up and wash-off patterns from the catchment. Therefore, this study explored the influence of varying rainfall characteristics on urban and agricultural runoff pollutant export using statistical approaches. For this purpose, Mann-Kendall and Pettitt's test were applied to detect the trend and breakpoint in rainfall characteristics time series. In addition, double mass curve and correlation analysis were used to drive the relationship between rainfall-runoff and pollutant exports from both catchments. The results indicate a significant decreased in total rainfall and average rainfall intensity, while a significant increased trend for antecedents dry days and total storm duration over the study periods. The breakpoint was determined to be 2013 which shows remarkable trend shifts for total rainfall, average rainfall intensity and antecedents dry days except total duration. Double mass curve exhibited a straight line with significant rainfall-runoff relationship indicates a climate change effect on both sites. Overall, higher pollutant exports were observed at both sites during the baseline period as compared to change periods. In agricultural site, most of the pollutants exhibited significant (p< 0.05) association with total rainfall, average rainfall intensity and total storm duration. In contrast, pollutants from urban site significantly correlated with antecedent dry days and average rainfall intensity. Thus, total rainfall, average rainfall intensity and total duration were the significant factors for the agricultural catchment while, antecedents dry days and average rainfall intensity were key factors in build-up and wash-off from the urban catchment.