• Title/Summary/Keyword: Perimeter hole

Search Result 8, Processing Time 0.021 seconds

Energy-efficient Data Dissemination Protocol for Detouring Routing Holes in Wireless Sensor Networks (무선 센서 네트워크에서 라우팅 홀을 우회하기 위한 에너지 효율적 데이타 전달 프로토콜)

  • Ye, Tian;Yu, Fucai;Choi, Young-Hwan;Park, Soo-Chang;Lee, Eui-Sin;Jin, Min-Sook;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.321-325
    • /
    • 2008
  • Void areas(holes) as an inevitable phenomenon exist in geographic routing of wireless sensor networks, because the unpredictable and harsh nature application environment or uneven energy consumption. Most of the existing schemes for the issue tend to construct a static detour path to bypass a hole. The static detour path may lead to uneven energy consumption of the nodes on the perimeter of the hole; thus it may enlarge the hole. At the same time, traffic would concentrate on the peripheral node of the hole; thus the nodes on the perimeter of the hole tend to be depleted quietly. In previous work, we have proposed a hole geometric model to reduce the energy consumption and packet collisions of the nodes on the hole boundary. This scheme, however, still has the static detour path problem. Therefore, we extend the previous work by constructing a dynamic detour path hole geometric model for wireless sensor networks in this paper. The location of hole detour anchors is dynamically shifted according to Gaussian function, just generating dynamic hole detour paths.

Hole Modeling and Detour Scheme for Geographic Routing in Wireless Sensor Networks

  • Yu, Fucai;Park, Soo-Chang;Lee, Eui-Sin;Kim, Sang-Ha
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.327-336
    • /
    • 2009
  • Geographic routing has been considered as an attractive approach in wireless sensor networks, since it routes data packets by using location information rather than global topology information. In geographic routing schemes, packets are usually sent along the boundary of a hole by face routing to detour the hole. As result, all data flows which need to detour the hole are concentrated on the boundary of the hole. This hole detour scheme results in much more energy consumption for nodes at the hole boundary, and the energy exhaustion of hole boundary nodes enlarges the holes. This is referred to as a hole diffusion problem. The perimeter mode may also lead to data collisions on the hole boundary nodes if multiple data flows need to bypass a hole simultaneously. In this paper, we propose a hole modeling and detour scheme for geographic routing in wire-less sensor networks. Our hole modeling and detour scheme can efficiently prevent hole diffusion, avoid the local minimum problem faced by geographic routing protocols, and reduce data collisions on the hole boundary nodes. Simulation results show that the proposed scheme is superior to the other protocols in terms of control overhead, average delivery delay and energy consumption.

Collaborative Stepwise Movement of Mobile Sensor Nodes for Energy Efficient Dynamic Sensor Network Coverage Maintenance (모바일 센서노드들의 협동형 단계적 이동기법 기반의 에너지 효율적인 동적 센서네트워크 커버리지 관리)

  • Han, Ngoc-Soc;Kim, Seong-Whan
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.535-542
    • /
    • 2009
  • Wireless Sensor Network (WSN) is a wireless network consisting of spatially distributed autonomous devices, using sensors to cooperatively monitor physical or environmental conditions. WSNs face the critical challenge of sustaining long-term operation on limited battery energy. Coverage maintenance has been proposed as a promising approach to prolong network lifetime. Mobile sensors equipped with communication devices can be leveraged to overcome the coverage problem. In this paper, we propose a stepwise movement scheme using perimeter coverage property for the coverage maintenance problem. In our scheme, each sensor monitors neighboring dead nodes, determines vulnerable node (i.e. dead node which makes uncovered area), computes the center of uncovered area HC, and makes a coordinated stepwise movement to compensate the uncovered area. In our experimental results, our scheme shows at least 50 % decrease in the total moving distance which determines the energy efficiency of mobile sensor.

A Study on the Drilling Methods to reduce Overbreak in Tunnel Blasting (터널발파 작업시 여굴 저감을 위한 천공방법 연구)

  • 김양균;김형철;유정훈
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • Overbreak or underbreak is one of the most important factors in evaluating the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and drilling conditions, has been a target of challenge to many blasting engineers because it directly affects construction cost. Drilling is generally known as one of the primary factors to generate overbreak. This study presents a real working model to reduce overbreak based on the analysis of drilling accuracy and overbreak generated from various working methods related to drilling. As the first step of the study, 45 experiments have been performed. The factors investigated are: marking contour line, the position of perimeter holes, the change of look-out with drilling rig position, and the proper space between perimeter holes. It is concluded that workers and engineers' will and efforts are the most important factors to reduce overbreak and that improving drilling method and pattern could reduce overbreak to a considerable amount.

Numerical Study on the Reduction of Blast-induced Damage Zone (최외곽공 주변암반의 발파굴착 손상영역 저감에 관한 수치해석적 연구)

  • Park, Se-Woong;Oh, Se-Wook;Min, Gyeong-Jo;Fukuda, Daisuke;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.25-33
    • /
    • 2019
  • Controlling the blast-induced damage zone(BDZ) in mining excavation is a significant issue for the safety of employees and the maintenance of facilities. Numerous studies have been conducted to accurately predict the BDZ in underground mining. This study employed the dynamic fracture process analysis (DFPA) to estimate the BDZ from a single hole blasting. The estimated BDZ were compared with the results obtained by Swedish empirical equation. The DFPA was also used to investigate the control mechanism of BDZ and fracture plane formation around perimeter holes for underground mining blasting.

Effects of Soil Conditions on the Vibratory Motion of Drilled Shaft (지반조건이 현장 타설 말뚝 선단부의 동적 경계조건에 미치는 영향)

  • 이병식;이원구
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.159-166
    • /
    • 2000
  • Non-destructive out-hole tests, impact-echo and impact-response are widely applied to evaluate integrity of drilled shafts. In these tests, vibratory motions of drilled shafts are interpreted, which induced by impacts on the shaft head. In applying the tests to evaluating integrity of shaft, it has been attended whether the tests have resolutions enough to distinguish existence of slime at between the shaft end and a bearing soil deposit. To distinguish existence of slime by tests, modes of shaft vibrations need to be reasonably interpreted, which generally vary according to a shaft boundary condition such as, a free-free or a free-fixed condition. The boundary condition of a shaft is, however, found to be significantly affected by stiffness of soil deposits around shaft as well as penetration depths of shaft into a bearing soil deposit. Thus, these effects on the boundary condition of a shaft should be considered reasonably in interpreting test results to decide the existence of slime. To investigate the effects, in this study, vibratory motions of shafts constructed in various soil conditions and end penetration depths are examined analytically. Based on the studies, variations of boundary condition are characterized in terms of soil stiffness contrast between a shaft perimeter and a shaft end, and also the ratio of a penetration depth to a shaft length. The results can be applied to verify the applicability of tests to identify the slime.

  • PDF

A Study on Overbreak Control Methods by Evaluating Drilling Conditions in Tunnel Blasting (터널발파시 천공상태 평가를 통한 여굴 저감방안 연구)

  • Kim, Yang-Kyun;Kim, In-Ho;Yoo, Joung-Hoon;Kim, Seong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.198-209
    • /
    • 2005
  • Overbreak or underbreak is one of the most important factors in evaluation the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and the method and condition of drilling, has been a target of challenge to many blasting engineers as it is connected with economic directly. Drilling is generally known as a primary one of overbreak producing factors. So, This study presented the practical solution to reduce overbreak, which was caused by drilling, through the analyses of how to make a drilling process accurate and how to evaluate the effect of each drilling method. Thus, this solution would give a quantitative analysis of overbreak and provide the information of how to reduce the quantity of overbreak. Moreover, for verifying this solution, we applied it to a tunnel project and then have found out that the quantity of overbreak decreased to approximately 10-40% compared with the previous way of overbreak control.

  • PDF

New tunnel reinforcement method using pressurized cavity expansion concept (천공홀 가압 팽창 개념을 도입한 터널 보조 신공법 연구)

  • Cho, In-Sung;Park, Jeong-Jun;Kim, Jong-Sun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.407-416
    • /
    • 2010
  • A new tunnel auxiliary method is proposed in this paper which utilizes the concept of cavity expansion for tuunel reinforcement by forming an umbrella arch on the roof of tunnel. When an inflatable pipe is inserted and expanded by pressure in the bore hole of umbrella arch, the ground around the bore hole can be compacted so that the stress condition above the tunnel perimeter is favorably changed. In order to verify the reinforcement effect of new concept, pilot-scale chamber test, trapdoor test and numerical analysis were performed and compared. In pilot-scale chamber test, three types of inflatable pipes are tested to verify the capability of expansion, and the results arc compared with analytical results obtained by applying cavity expansion theory and with results obtained from finite clement analysis, and the experimental results showed agreeable matches with analytical and numerical ones. Numerical analysis of a tunnel and trapdoor test applied with the inflatable pipes are also performed to figure out the reinforcement effect of the proposed techniques, and the results implied that the new method with 3 directional inflatable pipe (no pressure to downward direction) can contribute to reduce tunnel convergence and face settlement.