• Title/Summary/Keyword: Perilla meal

Search Result 34, Processing Time 0.03 seconds

Digestibility of nitrogen and dry matter of oilseed meals and distillers dried grains supplemented in swine diets

  • Park, Sung-Kwon;Cho, Eun-Seok;Jeong, Yong-Dae;Sa, Soo-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.769-776
    • /
    • 2016
  • This study was conducted to investigate the digestibility of dry matter (DM) and nitrogen (N) in oilseed meals and distillers dried grains (DDG) fed to growing-finishing pigs. As experimental animals, eleven barrows (initial body weight, $71.7{\pm}17.0kg$) were housed in individual metabolism cages. The experimental design consisted of an $11{\times}8$ incomplete Latin square with 11 dietary treatments and 8 replication periods. The diets were individually formulated with dehulled soybean meal produced in Korea (SBM-KD), soybean meal produced in India (SBM-I), soybean meal produced in Korea (SBM-K), corn high-protein distiller dried grains (HPDDG), tapioca distillers dried grains (TDDG), canola meal (CAM), corn germ meal (CGM), copra meal (COM), palm kernel meal (PKM), sesame meal (SM), and perilla meal (PM). Pigs with SBM-KD and SBM-K showed greater (p < 0.05) intake of N than SBM-I, HPDDG, and PKM. Total feces output was decreased (p < 0.05) in SBMs (SBM-KD, -I, and -K), HPDDG, and CGM compared with TDDG, SM, and PM. The DM in excreted feces was decreased (p < 0.05) in SBMs and CGM compared to TDDG, SM, and PM. Similarly, the SM and PM fed to pigs resulted in greater (p < 0.05) fecal excretion of N than the others. Apparent total tract digestibility (ATTD) of DM in SBMs and CGM was greater (p < 0.05) than TDDG, SM, and PM. The SBMs fed to pigs showed higher (p < 0.05) ATTD of N than TDDG, COM, SM, and PM. In conclusion, our results provided nutritional information about various ingredients and would be useful to contain more precise amounts of nutrients included in feed ingredients of pig diet.

Fractionation of Anticarcinogenic Enzyme Inducer(s) from Roasted Perilla (볶은 들깨박으로부터 암예방효소계 활성성분의 분획)

  • Hong, Eun-Young;Kang, Hee-Jung;Suh, Myung-Ja;Nam, Young-Jung;Kwon, Chong-Suk;Kim, Jong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.193-197
    • /
    • 1997
  • Elevation of the activities of phase 2 enzymes such as quinone reductase(QR) provides protection against several types of neoplasia. In this study, we performed partial purification of QR inducer(s) from roasted and defatted perilla meal by solvent fractionation and thin layer chromatography. Cellular QR induction was most notable in chloroform fraction of roasted perilla extract, compared with other solvent fractions. QR inducer(s) was partially purified by TLC, with 0.8 of $R_f$ value in n-butanol : n-propanol : 2N-ammonium hydroxide(10 : 60 : 30). AHH-inducing activity in TLC fractions isolated from methanol extracts of roasted perilla comigrated with QR-inducing fraction, suggesting that QR and AHH are induced by the same compound. TLC fractions shown strong QR-inducing activity also had a potent antioxidative activity, suggesting that cellular QR enzyme is induced by antioxidant(s) present in roasted perilla.

  • PDF

Effect of Dietary Calcium and Fat on Plasma Cholesterol Level and Cholesterol Metabolism in 1, 2-dimethylhydrazine-treated Rats (Dimethylhydrazine으로 처리한 쥐에서 식이의 Calcium 함량과 지방종류에 따라 혈장 Cholesterol 수준과 Cholesterol 대사에 미치는 영향)

  • 박현서;지은이;강금지
    • Journal of Nutrition and Health
    • /
    • v.31 no.9
    • /
    • pp.1394-1403
    • /
    • 1998
  • The study was designed to observe the effect of dietary calcium and fats on plasma cholesterol level, hepatic microsomal fluidity and HMG-CoA reductase activity as well as the excretion of fecal bile acids and neutral sterols in 1, 2-dimethylhydrazine(DMH)-treated rats. Male Sprague Dawley rats, at 7 weeks of age, were divided into 2 groups, 0.3% and 1.0% Ca levels and each group again subdivided into 2 groups of corn oil and perilla oil. Each rat was intramuscularly infused with DMH for 6 weeks to give total dose of 180mg/kg body weight and also fed experimental diet containing 15%(w/w) different fit and Ca(0.3% or 1.0%) for 20 weeks. High dietary calcium(1.0%) did not significantly influence on plasma cholesterol as well as hepatic microsomal fluidity and HMG CoA reductase activity, but significantly reduced the excretion of total bile acid per gram of faces and increased the excretion of total neutral sterol. However, high dietary Ca reduced the excretion of secondary bile acid(deoxycholic and lithocholic acids) which was known as promoter for colon cancer. Perilla oil rich in n-3 ${\alpha}$-linolenic acid significantly decreased plasma cholesterol by increasing hepatic microsomal fluidity compared with corn oil, but did not influence on HMG CoA reductase activity. Perilla oil did not influence on fecal excretion of total and primary bile acids, but reduced the excretion of secondary bile acids. Therefore, it could be recommended to consume more fish product and food rich in calcium and use more perilla oil in meal preparation to prevent from coronary hear disease and colon cancer especially when high fit diet has been practiced. (Korean Nutrition 31(9) : 1394-1403, 1998)

  • PDF

Changes of Fatty Acid Compositions in Brain Phospholipids of Developing Chicken Embryos (발생중인 닭의 배자에서 뇌 조직내 인지질의 지방산 조성 변화)

  • 김희성;최인숙;지규만
    • Korean Journal of Poultry Science
    • /
    • v.22 no.1
    • /
    • pp.31-42
    • /
    • 1995
  • This study was to investigate the effects of dietary linoleic acid(18:2\omega6, LA) and aipha-linolenic acid(18:3\omega3. \alpha-LNA) levels on brain development and fatty acid compositions of various lipid classes in the chicken embryo brain tissues. Thirty two ISA Brown layers, 52 weeks-old, were divided into four groups. Birds of each group were given corn-soybean meal based diets added with 1) safflower oil 8%, 2) safflower oil 6% + perilla oil 2%, 3) safflower oil 2% + perilla oil 6%, or 4) perilla oil 8%. Mter 15 days fed the diets. the layers were artificially inseminated to obtain fertile eggs. During the incubation. embryonic brains were sampled at 15th and 21st days. Fatty acid contents were quantitated by using heptadecanoic acid (17:0) as an internal standard. No significant differences in brain weight and in contents of various lipids such as phospholipid. triglyceride, cholesterol. cholesterol ester and free fatty acid in the tissues were found among the dietary groups (P<0.05). The ratios of AA/LA in the brain lipid classes were lowered as the dietary levels of perilla oil were increased. Higher LA was found in phosphatidylcholine(PC) than arachidonic acid (20:4\omega6. AA), meanwhile the level of LA was less than AA in phosphatidylethanolamine(PE). Docosahexaenoic acid(22:6\omega3, DHA) was the* major fatty acid in the tissue and its content in PE was 2.5~3 times higher than in PC. DHA level in the phospholipid reached at a peak (1.7~1.8 mg/brain) in dietary groups added with 6% or 8% perilla oil. suggesting that no more increase in that fatty acid level in the brain tissue could be obtained by consuming more \alpha-LNA, the major precursor of DHA.

  • PDF

Study on Correlation Between Feed Protein Fractions and In situ Protein Degradation Rate (사료 단백질의 Fraction과 In situ 단백질 분해율의 상관관계에 관한 연구)

  • Lee, S.Y.;Chung, Y.S.;Song, J.Y.;Park, S.H.;Sung, H.G.;Kim, H.J.;Ko, J.Y.;Ha, Jong-Kyu
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • This experiment was conducted to determine correlation between in vitro protein fractions and in situ protein degradation rate with major dairy protein sources(soybean meal, corn gluten meal, cotton seed meal, kapok seed meal and perilla meal). Five protein fractions were obtained according to the Cornell Net Carbohydate and Protein System(CNCPS), and in situ protein degradation rates were determined by technique using nylon bags incubated for 0, 4, 8, 12 and 24hrs in the rumen of three Holstein steers. Fraction A was highest in kapok seed meal(14.6%) and lowest in corn gluten meal(0.6%) (P<0.05). The highest B1, B2 and B3 fractions were contained in soybean meal(8.27%), cotton seed meal(74%), and perilla meal(40%), respectively. Corn gluten meal was very high in fraction C. In situ protein degradation rate of soybean meal was 98%, highest among five protein sources, and corn gluten meal had the lowest rate at 28%. Correlation analysis showed that easily soluble fractions of both methods, in situ protein degradation rate and digestible protein fractions, and in situ protein degradation rate minus “a” and fraction B2+B3 were highly correlated. These results indicate that in vitro protein fractionation can be used in the estimation of in situ protein degradation.

Effect of Different Dietary Fats on Colonic Epithelial Cell Phospholipid and Phosphatidyl Inositol Composition in DMH-treated Rats (서로 다른 종류의 식이지방이 1,2-Dimethylhydrazine으로 처리한 쥐의 대장점막 인지질 및 Phosphatidyl Inolsitol의 지방산조성에 미치는 영향)

  • 김채종;남정혜
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1996
  • The study was designed to observe the effects of different dietary fat consumed in Korea with those of three other fats on colonic epithelial cell phospholipid and phosphatidyl inositol composition, which were known as biomarker for colon cancer. Male Sprague Dawley rats, at 7 weeks of age, were divided into control and 1,2-dimethylhydrazine (DMH) -treated group that was again subdivided into four groups. The experimental diets contained one of four dietary fats at 15%(w/w) level, those were, blend fat(BF), beef tallow(BT), corn oil (CO) or perilla oil (PO) At the same time, each rat was injected nth saline for control group or DMH twice a week for 6 weeks to five total dose of 180 mg/kg body weight. Dietary fatty acid composition influenced the fatty acid compositions of tissues. Proportions of C18:2 colonic mucosal phospholipid well reflected dietary level of C18:2 showing in decending CO>BF>PO> BT. The percentage of C20:4 in phospholipid was the higher in CO and BT groups and the lowest in PO groups. Incorporation of -linolenic acid in colonic mucosal lipid In perilla oil group was negatively correlated to the content of C20:4. Therefore, $\omega$3-linolenic acid rich in perilla oil could be a very important dietary source in controlling arachidonic acid level in colon epithelial cell. Therefore it could be recommend to use more perilla oil in meal preparation to reduce the risk factor against colon cancer.

  • PDF

Changes in ruminal fermentation and blood metabolism in steers fed low protein TMR with protein fraction-enriched feeds

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • Four ruminally cannulated Holstein steers (BW $482.9{\pm}8.10kg$), fed low protein TMR (CP 11.7%) as a basal diet, were used to investigate changes in rumen fermentation and blood metabolism according to protein fraction, cornell net carbohydrates and protein system (CNCPS), and enriched feeds. The steers, arranged in a $4{\times}4$ Latin square design, consumed TMR only (control), TMR supplemented with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C), respectively. The protein feeds were substituted for 23.0% of CP in TMR. Ruminal pH, ammonia-N, and volatile fatty acids (VFA) in rumen digesta, sampled through ruminal cannula at 1 h-interval after the morning feeding, were analyzed. For plasma metabolites analysis, blood was sampled via the jugular vein after the rumen digesta sampling. Different N fraction-enriched protein feeds did not affect (p > 0.05) mean ruminal pH except AB1 being numerically lower 1 - 3 h post-feeding than the other groups. Mean ammonia-N was statistically (p < 0.05) higher for AB1 than for the other groups, but VFA did not differ among the groups. Blood urea nitrogen was statistically (p < 0.05) higher for B2 than for the other groups, which was rather unclear due to relatively low ruminal ammonia-N. This indicates that additional studies on relationships between dietary N fractions and ruminant metabolism according to different levels of CP in a basal diet should be required.

Influence of Various Biochars on the Survival, Growth, and Oxidative DNA Damage in the Earthworm Eisenia Fetida

  • Kim, Won-Il;Kunhikrishnan, Anitha;Go, Woo-Ri;Jeong, Seon-Hee;Kim, Gyeong-Jin;Lee, Seul;Yoo, Ji-Hyock;Cho, Namjun;Lee, Ji-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.231-238
    • /
    • 2014
  • BACKGROUND: Biochar (BC) has a great potential for enhancing soil fertility and carbon sequestration while facilitating beneficial waste disposition. Therefore, it is essential to assess and mitigate any inadvertent consequences associated with soil biochar amendment. Earthworm activity is very vital in the soil system, yet there are a limited number of studies that have examined their impact resulting from biochar application to soil. METHODS AND RESULTS: In this study, the survival, growth, reproductive tests, and oxidative DNA damage tests (measured by 8-hydroxydeoxyguanosine (8-OHdG) and catalase (CAT) activities) to assess the potential toxicity to earthworm Eisenia fetida in artificial soil amended with BCs were investigated. The BCs derived from perilla meal, sesame meal, and pumpkin seed were pyrolyzed at 300 and $550^{\circ}C$, and then amended with soil at a rate of 5%. All the earthworms survived, but lost weight compared to control soil after 28 day incubation period. Moreover, the BC-amended soils did not significantly affect the cocoon numbers of earthworms. Slightly higher concentrations of 8-OHdG and CAT were observed in earthworms present in BC-treated soil than those in control soil. Furthermore, the 8-OHdG concentrations in the soil amended with BC produced at $550^{\circ}C$ were greater than those at $300^{\circ}C$, and it slightly decreased as the incubation time increased. CONCLUSION: These observations could be due to higher contents of toxic metal(loid)s and also higher pH in BCs pyrolyzed at $550^{\circ}C$ than $300^{\circ}C$. While BC is efficiently being used in agricultural fields, this study suggests that it is required to assess the unintended negative impacts of BC on soil ecosystems.

Effect of $\alpha$-Linolenic Acid Rich Perilla oil on Colonic Mucosal Levels of Biomarkers(Fatty Acid Profile, DAG, Eicosanoid) in Colon Carcinogenesis of DMH-Treated Rats (들기름이 Dimethylhydrazine으로 처리한 쥐에서 대장암의 Biomarker인 지방산조성과 1, 2-Diacylglycerol 및 Eicosanoid 함량에 미치는 영향)

  • 김채종
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.112-121
    • /
    • 1996
  • The study was designed to observe the effect of blend fat calculated from the foods consumed in Korean with those of perilla oil, beef tallow and corn oil on colonic mucosal phospholipid fatty acid composition and the levels of TXB2 and diacylglycerol (DAG) which were known as biomarkers for cancer. Male Sprague Dawley rats, at 7 weeks of age, were divided into control and 1, 2-dimethylhydrazine (DMH)-treated group, and each group was subdivided into four groups. The experimental diets contained one of four dietary fats, blend fat (BF), perilla oil(PO), beef tallow (BT) or corn oil (CO), at 15% (w/w) level. At the same time, each rat was injected with saline for control group or DMH twice a week for 6 weeks to give total dose of 180mg/kg body weight. DMH injection, regardless of the type of dietary fats, significantly increased the levels of PGE2 and TXB2 in colonic mucosal layer compared to control (p<0.01). However, the level of eicosanoids was influenced by the types of dietary fats in both control and DMH group. In control groups, colonic mucosal level of TXB2 was higher in beef tallow group, but lower in perilla oil group compared to that of blend fat (p<0.01). In DMH groups, the level of TXB2 was higher in beef tallow and corn oil groups(p<0.05). The level of PGE2 showed the same trends with TXB2 and beef tallow most significantly increased the level of PGE2. DMH treatment did not influence on tissue fatty acid profile, which was directly reflected by dietary fatty acid composition. Proportions of C18 : 2 in colonic mucosal phospholipid well reflected dietary level of C18 : 2 showing the order CO>BF>PO>BT. The precentage of arachidonic acid(AA) in mucosal phospholipid was the highest by CO adn BT groups and the lowest by PO group. The incorporation of $\alpha$-linolenic acid in colonic mucosal phospholipid in perilla oil group was negatively correlated to the content of AA. Dietary level of C18 : 2 might not be the only controlling factor for the production of eicosanoids in colonic mucosa layer and might function with $\omega$3 fatty acids. The level of DAG was significanlty lower in PO group than that of BT group. Therefore, $\omega$3 $\alpha$-linolenic acid rich perilla oil could be very important dietary sourec in controlling eicosanoid production DAG level in cloln and recommenced to use more often in meal preparation to reduce the risk factor against colon cancer.

  • PDF

Effects of CNCPS fraction-enriched proteins on ruminal fermentation and plasma metabolites in holstein steers fed TMR containing low protein (저단백질 TMR을 기초사료로 급여한 홀스타인 거세우에 있어서 CNCPS fraction별 고함유 단백질 공급이 반추위 발효패턴 및 혈액대사물질에 미치는 영향)

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Four ruminally cannulated Holstein steers (BW $401.0{\pm}2.22kg$) fed TMR containing low protein (CP 9.63 %) as a basal diet were used to investigate the effects of cornell net carbohydrates and protein system (CNCPS) fraction enriched protein feeds on rumen fermentation and blood metabolites. The steers used in a $4{\times}4$ Latin square design consumed TMR only (control), TMR with rapeseed meal (AB1), TMR with soybean meal (B2) and TMR with perilla meal (B3C), respectively. The protein feeds were substituted for 30 % crude protein of TMR intake. For measuring ruminal pH, ammonia-N and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h-interval after the afternoon feeding. Blood was sampled via the jugular vein after the ruminal digesta sampling. Different CNCPS fraction-enriched proteins did not affect (p>0.05) ruminal pH except B3C being numerically low compared with the other groups. Ammonia-N and VFA were not significantly different among the experimental groups. Numerically low ammonia-N appeared in the steers fed rapeseed meal even though it contained high soluble N composition (A and B1 fractions). The discrepancy is unclear; however this may be related to low protein level in the diet and/or low DM intake. Blood metabolites were not significantly affected by the protein substitution except for blood urea nitrogen that was significantly (p<0.05) increased.