• Title/Summary/Keyword: Peridinium

Search Result 36, Processing Time 0.029 seconds

담수 와편모조 Peridinium bipes 휴면포자의 발아 특성

  • 박명환;김백호;고춘주;한명수
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.11a
    • /
    • pp.161-162
    • /
    • 2004
  • 주암호와 상사호의 담수와편모조 P. bipes 휴면포자의 환경조건에 따른 발아특성을 밝하기 위하여, 매월 채집된 휴면포자를 다양한 수온, 광조건, 영양염, pH 등에서 발아실험을 실시하였다. 실험결과, P. bipes 휴면포자는 수온 $20^{\circ}C$, 광도 $20{\mu}E/m^2/s$, 풍부한 영양원, pH 6-8 등이 최적발아조건으로 밝혀졌다. 특히, 환경요인 중 수온과 광조건은 휴면포자의 발아에 상대적으로 좀더 큰 영향을 주는 것으로 판단된다.

  • PDF

Oceanic Environments and Primary Production in the Coastal Waters of Seogwipo (서귀포 연안해역의 기초생산에 영향을 미치는 해양환경)

  • CHUNG Sang-Chul;RHO Hong-Kil;PARK Kil-Soon;JEON Deuk-San
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.305-315
    • /
    • 1983
  • A survey was carried out from July to December in 1979 and 1982 for the investigation of oceanographic conditions and phytoplankton in Seogwipo coastal area. Although a peculiar coastal sea water is formed by in flowing of fresh water, this is developed mainly in summer and disappeared or weakened in its strength after November. However, this coastal sea water covers only the surface while in mid and bottom layer open sea water is approached to the coast. Therefore, coastal and open sea water appears simultaneously in narrow sea area. Mean values of nutrient concentrates on surface layer during investigating period were $3.72{\sim}16.34{\mu}g-at/l$ in silicate, $1.98{\sim}5.53{\mu}g-at/l$ in nitrate and $0.34{\sim}0.90{\mu}g-at/l$ in phosphate. These showed slight differences among places but in general coastal side were lower than open sea side. Phosphates which is the lowest in concentrates among nutrients in Seogwipo coastal area shows almost similar value with Jinhae Bay but higher than open sea water around 10 mile south of Seogwipo. In general, seasonal changes of nutrients in investigating period shows a tendency of the lowest in October, increasing in November, and again slight decrease in December. As a phytoplankton fauna, 48 species, 1 variety and 2 breeds of Diatoms, 29 species, 3 varieties and 1 breed fo Dinoflagellates, and 1 species each of Chroococcus and Trichoceratium were found. Monthly predominant species are all neritic: Rhizosolenia sp. and Ceratium sp. in August, Chaetoceros sp., Ceratium sp. and Peridinium sp. in September, Astrionella sp. and Peridinium sp. in October, Astrionella sp., Navicula sp. and Chaetoceros sp. in November Among these, Rhizosolenia alata f. gracillima in August and Astrionella gracillima in November are remarkable predominant.

  • PDF

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

Changes of Phytoplankton Community with Inflow of Sea Water in Gyoungpo Lake; Comparison between 1998 and 2012 (해수 유입량 변동으로 인한 경포호 식물플랑크톤 군집의 변화; 1998년과 2012년도의 비교)

  • Lee, Eun Joo;Lee, Kyu Song
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.48-56
    • /
    • 2014
  • Weekly changes of water environments and phytoplankton community with the salinity gradients were investigated at Gyoungpo Lake from April to November in 1998 and 2012. Underwater crossam in Gyoungpo Lake was removed in 2004. Thereafter, average salinity of Gyoungpo lake increased from 7.5 ppt in 1998 to 20 ppt in 2012. A total of 99 and 80 species of phytoplankton was observed from the sampled in 1998 and 2012, respectively. The number of common species during the 2 separate years was 40. Transparency, SS, $NO_3-N$ concentration and N/P ratio in 2012 were lower than those in 1998. During the period of water shortage (April, May) of 2012 transparency decreased due to decreased salinity and increased SS and Chl. a. Correlation coefficients between species and community scores of DCA ordination based on data matrix of the phytoplankton revealed larger variation among sampling seasons in 1998 than in 2012. The increase of seawater influx and conversion rates following the removal of the underwater crossbeam might explain such a differential variation. Gymnodium sp., Peridinium sp., Prorocentrum sp., Nitzschia longissima, Schroederia setigera, Lyngbya sp., Asterococcus limneticus, Asterococcus superbus and Cyclotella meneghiniana were found to well adapt at the high salinities in 2012. Comparatively, Asterrionella formosa, Nitzschia frustulum, Chlorella ellipsoidea, Scenedesmus bijuga and Scenedesmus ellipsoideus were observed at lower salinities in 1998. Two quite contrasting phytoplankton communities were found in the two seasons of a year, spring with limited precipitation and summer, the flood season.

Seasonality of Phytoplankton in Dongbok Lake, Korea (동복호의 식물플랑크톤 출현 패턴)

  • Jeong, Myung-Hwa;Park, Jong-Hwan;Kim, Sang-Don;Kim, Dong-Ho;Chang, Nam-Ik;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.367-376
    • /
    • 2008
  • The seasonality of phytoplankton in Dongbok lake was analysed from March to November 2003. The concentrations of TN and TP showed nearly constant level except high concentrations in May at dam site of Dongbok lake. Chlorophyll ${\alpha}$ concentration was highest at dam site in May with 225.3 ${\mu}g$ L$^{-1}$ and high in spring and fall and low in summer at upper and central regions of Dongbok lake. A total of 108 phytoplankton species was identified as an algal flora of Dongbok lake. They were 54 Chlorophyceae, 30 Bacillariophyceae, 12 Cyanophyceae, and 12 species of other taxa. Total cell biomass of phytoplankton showed peaks in May$\sim$June and August$\sim$September, and low biomass in July at dam site. However, upper and central regions of Dongbok lake showed no clear patterns in cell biomass. Maximum biomass was 7,158 cells mL$^{-1}$ at dam site in May with the blooms of Peridinium bipes f. occulatum. The general seasonality of phytoplankton in Dongbok lake was Bacillariophyceae-Dinophyceae/Bacillariophyceae-Cyanophyceae/Chlorophyceae/Bacillariophyceae-Bacillariophyceae in 2003.

Novel Algicidal Substance (Naphthoquinone Group) from Bio-derived Synthetic Materials against Harmful Cyanobacteria, Microcystis and Dolichospermum (유해 남조류 Microcystis와 Dolichospermum에 대하여 선택적 제어가 가능한 생물유래 살조물질 (Naphthoquinone 계열))

  • Joo, Jae-Hyoung;Cho, Hoon;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.22-34
    • /
    • 2016
  • We developed a biologically-derived substance naphthoquinone (NQ) derivate for the eco-safe mitigation of harmful cyanobacteria blooms such as Microcystis and Dolichospermum. NQ was reacted with various substituents ($R_n$) to produce different NQ derivatives. We tested a total of 92 algicidal compounds based on the algicidal activity of Microcystis and Dolichospermum. 22 compounds of NQ were selected as candidates (algicidal activity >80% at $1{\mu}M$). Among them, NQ 40 compound showed the highest algicidal activity of 99.6% and 100% at the optimal concentration of $1{\mu}M$ on Microcystis and Dolichospermum, respectively. No algicidal effects of NQ 40 ($1{\mu}M$) were observed against non-target algae such as Stephanodiscus, Cyclotella and Peridinium. According to the results of acute eco-toxicity assessment, the $EC_{50}$ values of NQ 40 compound for Selenastrum capricornutum and Daphnia magna were 3.2 and $14.5{\mu}M$, respectively, and the $LC_{50}$ for Danio rerio was $15.7{\mu}M$. In addition, for D. magna chronic eco-toxicity assessment, no toxicity toward survival, growth and reproduction was observed. Therefore, we suggested the NQ 40 ($1{\mu}M$) compound as an alternative eco-safe algicidal substance to effectively mitigate harmful cyanobacteria blooms.

Seasonal Changes of Community Structure of Phytoplankton in Three Korean Seagrass Beds (한국연안 3개 해초지 표층수에서 식물플랑크톤 군집구조의 계절 변화)

  • Lee, Sang-Yong;Lee, In-Woo;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.95-105
    • /
    • 2006
  • To clarify the seasonal changes of the phytoplankton community in seagrass beds, the abundance and distribution of phytoplankton, and environmental factors were measured in seagrass beds: in the Dongdae Bay and Aenggang Bay on the southern coast of Korea, and off Seungbong Island on the western coast of Korea, in October 2002, January, March, and June 2003. Water temperature, salinity, SPM, chlorophyll a, aboveground biomass of seagrass, DIN and DIP concentrations significantly changed within the sampling time. The taxa of phytoplankton observed in seagrass beds were classified as 3 divisions, 3 classes,4 orders,16 families, 27 genera, 65 species. 50 species of diatoms were recognized with 14 species of dinoflagellates, and 1 species of silicoflagellate. The species of genera Coscinodiscus and Thalassiosira were dominant all around the study areas but Peridinium granii, Eucampia zodiacus and Pleurosigma elongatum were seasonally dominant. Phytoplankton standing crops varied from minimum of $0.6{\times}10^3\;cells\;l^{-1}$ (June, Dongdae Bay) to maximum$21.1{\times}10^3\;cells\;l^{-1}$(March, Aenggang Bay). The standing crops and species composition of phytoplankton were relatively lower and simpler than those of other southern and western coastal areas. Seasonal variations of diatom standing crops in seagrass beds were attributed to seasonal changes in DIN and in DIP of water column.

Seasonal Changes of the Phytoplankton and the Periphyton Community at the Suer Stream in Kwangyang (전남 광양의 수어천 수역에 있어서 식물플랑크톤과 부착조류 군집의 계절적 변화)

  • Yoon, Sook-Kyung;Lee, Kyung
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.38-50
    • /
    • 2000
  • Seasonal changes of the phytoplankton and the periphyton community were investigated from August 1998 to April 1999 at five stations at the Suer stream in Kwangyang. A total of 112 species of phytoplankton were identified. Of those, the diatoms were present at all stations but the green algae, the bluegreen algae, and the dioflagellates were present at Station 4 and Station 5 more frequently than the other stations. The phytoplankton standing crops varied from 10,100 cells/1 at Station 4 in April 1999 to 1,489,100 cells/1 at Station 4 in October 1998. The seasonal variation patterns of phytoplankton standing crops were different among stations as well as the pattern of presence. The dominant species were as follows: Achnanthes minutissima, Aulacoseira distans v. alpigena, Cocconeis placentula v. lineata, Cymbella minuta, C. silesiaca, Fragilaria arcus v. recta, Peridinium cinctum, Rhizosofenia longiseta, Synedra rumpens and filamentous algae. Of those, Achnanthes minutissima, Rhizosolenia longiseta, Synedra rumpens and filamentous algae showed the highest rate of occupation in the phytoplankton standing crops during the investigated periods. A total of 99 species of periphyton were identified. Among those, the diatoms of the periphyton community were observed frequently rather than those of the phytoplankton community. The ecological indicator values showed ${\bate}$-mesosaprobous in saprobity and was close to eutraphentic in trophic state. There were no considerable differences between the ecological indicator values by planktonic diatoms and periphytic diatoms.

  • PDF

Effects of Light-Blocking on Water Quality and Phytoplankton Community in Lake Juam (주암호에서 수질과 식물플랑크톤 군집에 미치는 광 차단효과)

  • Lee, Yong-Woon;Lee, Hak-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.150-160
    • /
    • 2003
  • This study was carried out to assess inhibitory effects of light-blocking on water quality and phytoplankton community in Lake Juam from August to November 2000. The values of water temperature, DO, TN, $NO_3-N$, $NH_4-N$, TP, DIP, COD, SS and PH did not show clear differences between inside and outside light-blocked areas. Concentrations of Chl-a decreased -6.6${\sim}$40% (mean 14.7%) from inside of the light-blocked area by light blocking. During the study, 55 species of phytoplankton were indentified, and the dominant species were Microcystis aeruginosa, Aulacoseira granulata, Peridinium sp., Synedra spp., Oscillatoria sp., Fragilaria construens, and Trachelomonas sp. The successional pattern of dominant phytoplankton was diatoms (July)${\to}$ diatoms/cyanophytes (August-September)${\to}$cyanophytes (October)${\to}$ diatoms (October-November). The standing crop of phytoplankton showed maximum density in 22 September with $1.1{\times}10^4$cells/L, and minimum in 25 October with $4.7{\times}10^3$ cells/L. The decreasing efficiency of standing crop by light-blocking was 8${\sim}$38% (mean 19.9%). Through this study we found that blocking light seems to have a decreasing effect on the density of phytoplankton.

A Taxonomical Study On The Dinoflagellates Of The Coastal Waters In The Vicinity Of Yeosu, Korea (여수 근해의 쌍편모조류에 관한 분류학적 연구)

  • Shim, Jae Hyung;Shin, Eun-Young;Choi, Joong Ki
    • 한국해양학회지
    • /
    • v.16 no.2
    • /
    • pp.57-98
    • /
    • 1981
  • This study deals with the marine dinoflagellates observed in 50 samples collected in the vincinity of Yeosu from August 1979 to May 1980. Forty-nine species were identified and these taxa are attributed to 10 genera, of which 2 are infraspecific taxa. Two families, 3 genera, and 32 species are new records for the Korean coastal waters. Small dinoflagellates recorded in this study are ascribed to the use of volumetric samplers instead of nets. In this area, the armored forms are the most important components of the dinoflagellates (39 taxa). All species are illustrated by photomicroscopy. There are 49 pictures of taxa. An attempt has been made to provide more correct references to each species. There are comparative descriptive information, taxonomic comments, and distributional data for each species.

  • PDF