• 제목/요약/키워드: Performance-Based Design

검색결과 10,729건 처리시간 0.056초

건축물의 성능적 내화설계 평가 요소기술 개발 (Development of the Evaluation Element for Fire Engineering Design)

  • 권인규;김흥열
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2009년도 춘계학술논문발표회 논문집
    • /
    • pp.410-414
    • /
    • 2009
  • Performance based fire engineering design should be developed through basic survey and fundamental element such as analytic program for evaluation of fire performance of building. The basic elements will be expressed to the surveys of the structures of building laws, regulation and the fundamental elements consist of technical guidances contained design fires, heat analysis, determination of structural performance.

  • PDF

내진설계의 성능 기준화 (Performance-Based Seismic Design)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.4-10
    • /
    • 1997
  • The fundamental philosophy underlying the seismic design of structures and systems are evolving into the performance based concept. The background and current status of this development in other countries are briefly summarized. The new code system which consists of two level seismic design criteria will be introduced. The implementation of the preformance based design concepts in the criteria will be explained.

  • PDF

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

변위계수법을 활용한 최적 내진 성능기반 설계기법 개발 (Development of Optimal Performance based Seismic Design Method using Displacement Coefficient Method)

  • 이현국;권윤한;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2004
  • Recently, performance based seismic design (PBSD) methods in numerous forms have been suggested and widely studied as a new concept of seismic design. The PBDSs are far from being practical due to complexity of algorithms resided in the design philosophy In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this paper, strength design criteria, stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 9-story two-dimensional steel frame structures.

  • PDF

2차원 철골 구조물의 최적 성능기반 내진설계법 개발 (Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames)

  • 권봉근;이현국;권윤한;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

분해접근법에 기반한 제조시스템에서의 성과지표 설계 (Decomposition-Based Approach for Designing Performance Measures in Manufacturing System)

  • 문병근;조규갑
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.163-166
    • /
    • 2004
  • This paper proposes decomposition-based approach for developing the evaluation factors of performance measures and designing performance measures in manufacturing system. In this paper, the evaluation factors are designed by design decomposition approach and the design process of performance measures is based on the manufacturing system design decomposition.

  • PDF

성능기반설계에서의 요구성능의 개념 정의 및 필요성 (Introduction and Necessity of concept of Demand for Performance-Based Design)

  • 이병국;박대효;이상열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.125-128
    • /
    • 2008
  • 오늘날 많은 연구기관에서 구조물 설계에 관한 연구가 수행되고 있는 가운데 내진분야에서 처음으로 구조물에 대한 성능기반설계에 대한 기본개념이 제시되었다. 이후 여러 연구기관에서 성능기반설계를 수행하기 위해 사용자와 설계자 간의 의사소통을 원활히 이루어지게 하기 위해 요구성능에 대한 기준을 정립를 하였다. 성능기반설계는 구조물이 위치하게 될 지역적 특성이나 구조물의 특성에 따라 구조물에 발생될 수 있는 위험에 대한 정확한 분석과 구조물에 대한 사회적 경제적 환경적 영향에 대한 분석을 통하여 구조물에 요구되는 요구성능에 맞추어 구조물을 설계하여 공용기간동안 구조물에 대한 안전을 보장하는 설계방법이다. 구조물에 대한 정확한 요구성능을 파악하기 위해 성능수준 및 성능목표에 대한 정의가 필요하여 본 연구에서 성능기반설계를 수행하기 위해 ATC-40(2002), FEMA-273(1997), Eurocode(1998)에서의 요구성능기준에 관한 기초자료를 조사하였다.

  • PDF

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.