• Title/Summary/Keyword: Performance state

Search Result 7,939, Processing Time 0.04 seconds

A Study on the Policy Innovation Plan for Public Technology Commercialization (공공기술사업화의 정책 혁신 방안에 관한 연구)

  • Yun, Jeong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.212-220
    • /
    • 2021
  • National R&D investment has steadily increased, reaching number 5 in the world as of 2018. However, for public technology commercialization, the level of discovery of policy models through various cooperation initiatives between government ministries is insufficient, and the performance system that can spread technology commercialization is also limited. In this respect, in order to create results in public technology commercialization, it is necessary to prepare alternatives to strengthen multi-ministerial policy cooperation and increase policy execution power. In this paper, we analyzed the current state of national R&D projects by major ministries and suggested an optimized technology commercialization plan through analysis of the structure, budget, and form of each project. In particular, an alternative in terms of policy efficiency was suggested by analyzing the problems of policy discovery that have not been studied previously. This study is of great significance in that it diagnosed problems of public technology commercialization in terms of the lack of systematic research on public technology commercialization and suggested policy advancement for the spread of technology use and the strategic direction in terms of commercialization.

Effect of Regulatory focus and Theory of Intelligence in the order of learning (학습순서 결정에서 지능관점과 조절초점의 영향)

  • Cho, Hyeseung;Kim, Kyungil;Bae, Jinhee
    • Korean Journal of Cognitive Science
    • /
    • v.31 no.4
    • /
    • pp.137-154
    • /
    • 2020
  • Psychological properties of learners have influence on learning behaviors in various ways. The purpose of this study was to examine how the goal orientation of learners affected the learning time distribution method. Regulatory focus and theories of intelligence were measured and manipulated in order to differentiate participants' goal-oriented state. Two variables are known to be key variables influencing learner's goal orientation, inducing the approach-avoidance strategy and mastery-performance oriented attitude. In the experiment, the control focus was divided into two groups based on the inclination test score (regulatory Focus Questionnaire, RFQ), and TOI(theory of intelligence) was temporally induced through manipulation to confirm the interaction between the two variables. Participants were able to determine the order of learning freely by learning a set of Spanish-Korean word pairs and then selecting the items they would like to re-learn. Word pairs consisted of difficult or easy items, and learners could learn the same word many times if they wanted to. In the results, promotion-incremental group showed allocating difficult word-pairs in early time.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

A Study on Determination of Suspension Spring Coefficient of Electric UTV for Agricultural Use through Virtual Simulation (가상 시뮬레이션을 통한 농업용 전동 UTV의 서스펜션 스프링 계수 결정 연구)

  • Kim, Sang Cheol;Kim, Seong Hoon;Kim, Seung Wan
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.75-81
    • /
    • 2022
  • In order to respond to carbon neutrality and climate change in agriculture, agricultural machinery, which has been developed centered on internal combustion engines, needs to be converted to an electric-based technology that does not emit greenhouse gases. In this study, simulations for electric UTV suspension design were performed to reduce vibration and shock of electric UTV for agricultural use and to improve driving stability and control performance of the vehicle. The simulation was performed by dividing the tolerance load of the vehicle body and the loaded load state. The range of motion of the suspension spring of UTV is within 30% of the range of motion under condition B under tolerance, the displacement of the UTV suspension with full load is reduced from 264mm to 121mm, and the damping speed is 260mm/s to 300mm/s that it can be seen that the range of motion is within 60%. Suspension design of electric UTV for multi-purpose agricultural work is a very important factor for maintaining agricultural work ability in towing work such as tillage as well as driving and terrain adaptation. The results of this study can be usefully used to determine the spring parameters with the appropriate damping range so that the electric UTV can be used for various agricultural tasks.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models (DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지)

  • Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Youn, Youjeong;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.

A study on frost prediction model using machine learning (머신러닝을 사용한 서리 예측 연구)

  • Kim, Hyojeoung;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.543-552
    • /
    • 2022
  • When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world's largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage. In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data. XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI.

Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System (반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현)

  • Sun-Ho, Park;Woo-Geun, Choi;Kyung-Yeol, Choi;Sang-Hyuk, Kwon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.562-569
    • /
    • 2022
  • The alarm monitoring technology applied to existing operating ships manages data items such as temperature and pressure with AMS (Alarm Monitoring System) and provides an alarm to the crew should these sensing data exceed the normal level range. In addition, the maintenance of existing ships follows the Planned Maintenance System (PMS). whereby the sensing data measured from the equipment is monitored and if it surpasses the set range, maintenance is performed through an alarm, or the corresponding part is replaced in advance after being used for a certain period of time regardless of whether the target device has a malfunction or not. To secure the reliability and operational safety of ship engine operation, it is necessary to enable advanced diagnosis and prediction based on real-time condition monitoring data. To do so, comprehensive measurement of actual ship data, creation of a database, and implementation of a condition diagnosis monitoring system for condition-based predictive maintenance of auxiliary equipment and piping must take place. Furthermore, the system should enable management of auxiliary equipment and piping status information based on a responsive web, and be optimized for screen and resolution so that it can be accessed and used by various mobile devices such as smartphones as well as for viewing on a PC on board. This update cost is low, and the management method is easy. In this paper, we propose CBM (Condition Based Management) technology, for autonomous ships. This core technology is used to identify abnormal phenomena through state diagnosis and monitoring of pumps and purifiers among ship auxiliary equipment, and seawater and steam pipes among pipes. It is intended to provide performance diagnosis and failure prediction of ship auxiliary equipment and piping for convergence analysis, and to support preventive maintenance decision-making.