• Title/Summary/Keyword: Performance prediction method

Search Result 2,140, Processing Time 0.027 seconds

Performance Prediction of the Horizontal Axis Wind Turbine in the Fully Non-Axial Flow (완전 비축유동에 있는 수평축 풍력터빈의 성능예측)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.39-48
    • /
    • 1994
  • Up to the present the study on the performance prediction of HAWT was perfomed mainly by assuming the axial flow. So in this paper we aimed at the fully non-axial flow of HAWT. For this purpose, we defined the wind turbine pitch angle in addition to the yaw angle to specify the arbitrary wind direction. And we adopted the Glauert method as the basic analysis method then modified this method suitably for our goal. By comparing the computational results obtained by this modified new Glaurert method with the experimental results, it was proved that our method was a very efficient method.

  • PDF

A Study on Modified Linear Prediction Method to Improve Target Estimation (목표물 추정 향상을 위한 수정 선형 예측방법에 대한 연구)

  • Lee, Kwan-Hyeong;Joo, Jong-Hyuk
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.337-342
    • /
    • 2016
  • In this paper, we studied a modified linear prediction method to estimate target signal correctly. Linear prediction method estimate direction-of-arrival to linear combination for any antenna element and other antenna elements. Modified linear prediction used optimal weight and posterior probability method. Through simulation, we are comparative analysis about the performance of proposed, bartlett and MUSIC method. From simulation, Bartlett and MUSIC method was estimation 3 targets signal, and proposed method estimated 4 targets. We showed the superior performance of the proposed algorithm relative to the classical method in order to estimate of target signals.

A Sensitivity Analysis of Centrifugal Compressors Empirical Models

  • Baek, Je-Hyun;Sungho Yoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1292-1301
    • /
    • 2001
  • The mean-line method using empirical models is the most practical method of predicting off-design performance. To gain insight into the empirical models, the influence of empirical models on the performance prediction results is investigated. We found that, in the two-zone model, the secondary flow mass fraction has a considerable effect at high mass flow-rates on the performance prediction curves. In the TEIS model, the first element changes the slope of the performance curves as well as the stable operating range. The second element makes the performance curves move up and down as it increases or decreases. It is also discovered that the slip factor affects pressure ratio, but it has little effect on efficiency. Finally, this study reveals that the skin friction coefficient has significant effect on both the pressure ratio curve and the efficiency curve. These results show the limitations of the present empirical models, and more resonable empirical models are reeded.

  • PDF

Fair Performance Evaluation Method for Stock Trend Prediction Models (주가 경향 예측 모델의 공정한 성능 평가 방법)

  • Lim, Chungsoo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.702-714
    • /
    • 2020
  • Stock investment is a personal investment technique that has gathered tremendous interest since the reduction in interest rates and tax exemption. However, it is risky especially for those who do not have expert knowledge on stock volatility. Therefore, it is well understood that accurate stock trend prediction can greatly help stock investment, giving birth to a volume of research work in the field. In order to compare different research works and to optimize hyper-parameters for prediction models, it is required to have an evaluation standard that can accurately assess performances of prediction models. However, little research has been done in the area, and conventionally used methods have been employed repeatedly without being rigorously validated. For this reason, we first analyze performance evaluation of stock trend prediction with respect to performance metrics and data composition, and propose a fair evaluation method based on prediction disparity ratio.

Development of Solar Power Output Prediction Method using Big Data Processing Technic (태양광 발전량 예측을 위한 빅데이터 처리 방법 개발)

  • Jung, Jae Cheon;Song, Chi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.

Statistical Prediction of False Alarm Rates in Automatic Vision Inspection System (자동결함 검출시스템에서 결함크기 측정오차로 인한 오검률의 통계적 예측)

  • Joo, Young-Bok;Huh, Kyung-Moo;Park, Kil-Houm
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.906-908
    • /
    • 2009
  • AVI (Automatic Vision Inspection) systems automatically detect defect features and measure their sizes via camera vision. It is important to predict the performance of an AVI to meet customer's specification in advance. Also the prediction can indicate the level of current performance of an AVI system. In this paper, we propose a statistical method for prediction of false alarm rate regarding inconsistency of defect size measurement process. For this purpose, only simple experiments are needed to measure the defect sizes for certain number of times. The statistical features from the experiment are utilized in the prediction process. Therefore, the proposed method is swift and easy to implement and use. The experiment shows a close prediction compared to manual inspection results.

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링을 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

AP, IP Prediction For Corpus-based Korean Text-To-Speech (코퍼스 방식 음성합성에서의 개선된 운율구 경계 예측)

  • Kwon, O-Hil;Hong, Mun-Ki;Kang, Sun-Mee;Shin, Ji-Young
    • Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • One of the most important factor in the performance of Korean text-to-speech system is the prediction of accentual and intonational phrase boundary. The previous method of prediction shows only the 75-85% which is not proper in the practical and commercial system. Therefore, more accurate prediction must be needed in the practical system. In this study, we propose the simple and more accurate method of the prediction of AP, IP.

  • PDF