• Title/Summary/Keyword: Performance prediction method

Search Result 2,162, Processing Time 0.03 seconds

Rapid Self-Configuration and Optimization of Mobile Communication Network Base Station using Artificial Intelligent and SON Technology (인공지능과 자율운용 기술을 이용한 긴급형 이동통신 기지국 자율설정 및 최적화)

  • Kim, Jaejeong;Lee, Heejun;Ji, Seunghwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1357-1366
    • /
    • 2022
  • It is important to quickly and accurately build a disaster network or tactical mobile communication network adapting to the field. In configuring the traditional wireless communication systems, the parameters of the base station are set through cell planning. However, for cell planning, information on the environment must be established in advance. If parameters which are not appropriate for the field are used, because they are not reflected in cell planning, additional optimization must be carried out to solve problems and improve performance after network construction. In this paper, we present a rapid mobile communication network construction and optimization method using artificial intelligence and SON technologies in mobile communication base stations. After automatically setting the base station parameters using the CNN model that classifies the terrain with path loss prediction through the DNN model from the location of the base station and the measurement information, the path loss model enables continuous overage/capacity optimization.

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.149-155
    • /
    • 2022
  • The popularity of e-commerce systems on the Internet is increasing day by day, and the recommendation system, as a core function of these systems, greatly reduces the effort to search for desired products by recommending products that customers may prefer. The collaborative filtering technique is a recommendation algorithm that has been successfully implemented in many commercial systems, but despite its popularity and usefulness in academia, the memory-based implementation has inaccuracies in its reference neighbor. To solve this problem, this study proposes a new time-aware collaborative filtering technique that integrates and utilizes the neighbors of each item and each user, weighting the recent similarity more than the past similarity with them, and reflecting it in the recommendation list decision. Through the experimental evaluation, it was confirmed that the proposed method showed superior performance in terms of prediction accuracy than other existing methods.

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Tunnel wall convergence prediction using optimized LSTM deep neural network

  • Arsalan, Mahmoodzadeh;Mohammadreza, Taghizadeh;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Hanan, Samadi;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.545-556
    • /
    • 2022
  • Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.

Analysis of Electrical Resistivity Change in Piping Simulation of a Fill Dam (필댐의 파이핑 재현시험시 전기비저항 변화 분석)

  • Ahn, Hee-Bok;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.59-68
    • /
    • 2010
  • Piping, a common form of internal embankment erosion, is caused by progressive movement of soil particles through an embankment. The phenomenon commonly occurs with precursory signs of development of fractures in dam structures, but also occurs without any noticeable signs in dams that showed satisfactory dam performance for several years, due to dissolution of soluble material in an embankment. While piping accounts for nearly 50% of the causes for dam failure, few studies have been made for systematic evaluation of the phenomenon. In this study, we attempted to monitor the changes in electrical resistivities of fill-dam material while a saddle dam is dismantled for the construction of emergency spillways of Daechung dam. Two artificial subhorizontal boreholes were drilled into the embankment structure to simulate piping along the two artificial flow channels. Monitoring of changes in electrical resistivity showed an increase in resistivity values during piping. Thus, the investigation of resistivity over time could be an effective method for piping prediction.

Systematic Review of Upper Extremity Movement Assessment and Artificial Intelligence Convergence Research in Brain Injured Patients (뇌손상 환자의 상지 움직임 평가와 인공지능 융합연구에 관한 체계적 고찰)

  • Park, Sun Ha;Park, Hae Yean
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2022
  • The purpose of this study is to identify trends in the application of artificial intelligence by analyzing upper extremity movement assessment and artificial intelligence convergence research using a systematic literature review method. The research was conducted using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Among the 380 articles searched in three databases, 8 articles were finally selected according to the selection and exclusion criteria. For the evaluation of upper extremity movement, motion performance evaluation, FMA, and ARAT were used. For quantification, data were extracted using various tools, and upper extremity movement classification, recovery prognosis prediction, and evaluation tool score were predicted using artificial intelligence. This study is meaningful in that it systematically reviewed studies that objectively evaluated upper extremity movement using artificial intelligence and identified the direction in which artificial intelligence is being applied. Based on this, the introduction of artificial intelligence technology in the assessment of upper extremity movements is expected to help objectively identify the intervention effect and the patient's recovery.

Experiment of proof-of-principle on prompt gamma-positron emission tomography (PG-PET) system for in-vivo dose distribution verification in proton therapy

  • Bo-Wi Cheon ;Hyun Cheol Lee;Sei Hwan You;Hee Seo ;Chul Hee Min ;Hyun Joon Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2018-2025
    • /
    • 2023
  • In our previous study, we proposed an integrated PG-PET-based imaging method to increase the prediction accuracy for patient dose distributions. The purpose of the present study is to experimentally validate the feasibility of the PG-PET system. Based on the detector geometry optimized in the previous study, we constructed a dual-head PG-PET system consisting of a 16 × 16 GAGG scintillator and KETEK SiPM arrays, BaSO4 reflectors, and an 8 × 8 parallel-hole tungsten collimator. The performance of this system as equipped with a proof of principle, we measured the PG and positron emission (PE) distributions from a 3 × 6 × 10 cm3 PMMA phantom for a 45 MeV proton beam. The measured depth was about 17 mm and the expected depth was 16 mm in the computation simulation under the same conditions as the measurements. In the comparison result, we can find a 1 mm difference between computation simulation and measurement. In this study, our results show the feasibility of the PG-PET system for in-vivo range verification. However, further study should be followed with the consideration of the typical measurement conditions in the clinic application.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Prediction of Rheological Properties of Cement-Based Pastes Considering the Particle Properties of Binders (결합재의 입자특성을 고려한 시멘트 기반 2성분계 페이스트의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.111-119
    • /
    • 2023
  • Recently, a variety of new cement-based materials have been developed, and attempts to predict the properties of these new materials are increasing. In this study, we aimed to predict the rheological properties of binary blended pastes. The cementitious materials used in the study included Portland cement (PC), fly ash (FA), blast furnace slag (BS), and silica fume (SF). The three binder components, fly ash, blast furnace slag, and silica fume, were blended with cement as the foundational composition. We predicted the yield stress and plastic viscosity of the pastes using the YODEL (Yield stress mODEL) and Krieger-Dougherty's equation. The predictive model's performance was validated by comparing it with experimental results obtained using a rheometer. When the rheological properties of the binary blended paste were predicted by reconstructing the properties and parameters used to predict the individual materials, it was evident that the predictions made using the proposed method closely matched the experimental results.

Prediction of Venous Trans-Stenotic Pressure Gradient Using Shape Features Derived From Magnetic Resonance Venography in Idiopathic Intracranial Hypertension Patients

  • Chao Ma;Haoyu Zhu;Shikai Liang;Yuzhou Chang;Dapeng Mo;Chuhan Jiang;Yupeng Zhang
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • Objective: Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology associated with venous sinus stenosis. This study aimed to develop a magnetic resonance venography (MRV)-based radiomics model for predicting a high trans-stenotic pressure gradient (TPG) in IIH patients diagnosed with venous sinus stenosis. Materials and Methods: This retrospective study included 105 IIH patients (median age [interquartile range], 35 years [27-42 years]; female:male, 82:23) who underwent MRV and catheter venography complemented by venous manometry. Contrast enhanced-MRV was conducted under 1.5 Tesla system, and the images were reconstructed using a standard algorithm. Shape features were derived from MRV images via the PyRadiomics package and selected by utilizing the least absolute shrinkage and selection operator (LASSO) method. A radiomics score for predicting high TPG (≥ 8 mmHg) in IIH patients was formulated using multivariable logistic regression; its discrimination performance was assessed using the area under the receiver operating characteristic curve (AUROC). A nomogram was constructed by incorporating the radiomics scores and clinical features. Results: Data from 105 patients were randomly divided into two distinct datasets for model training (n = 73; 50 and 23 with and without high TPG, respectively) and testing (n = 32; 22 and 10 with and without high TPG, respectively). Three informative shape features were identified in the training datasets: least axis length, sphericity, and maximum three-dimensional diameter. The radiomics score for predicting high TPG in IIH patients demonstrated an AUROC of 0.906 (95% confidence interval, 0.836-0.976) in the training dataset and 0.877 (95% confidence interval, 0.755-0.999) in the test dataset. The nomogram showed good calibration. Conclusion: Our study presents the feasibility of a novel model for predicting high TPG in IIH patients using radiomics analysis of noninvasive MRV-based shape features. This information may aid clinicians in identifying patients who may benefit from stenting.