• Title/Summary/Keyword: Performance parameter and evaluation

Search Result 436, Processing Time 0.03 seconds

Design and Performance Evaluation of Low-Volume PM2.5 Inlet (저용량 PM2.5 도입부 개발 및 성능평가)

  • Kim Dae-Seong;Hong Sang-Beom;Lee Jae-Hun;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.251-252
    • /
    • 2003
  • Most particles capable of reaching the thoracic region of humans are in the size range below 10$\mu$m in diameter. Particles with a diameter smaller than 2.5 $\mu$m are deposited in large amounts in the alveolar region during mouth inhalation. The hazard caused by fine particles depends on their chemical composition and the site within the human respiratory system where they are deposited(Hinds, 1982). Therefore, the concentration of air borne fine particles is an important parameter for the evaluation of the degree of hazard in an atmospheric environment. (omitted)

  • PDF

The design parameter evaluation of ion exchange process for ultra pure water production (초순수 생산을 위한 이온교환공정 설계특성 평가)

  • Park, Se-Chool;Kwon, Boung-Su;Lee, Kyung-Hyuk;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of $25m^3/d$. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency, whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant($25m^3/d$). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.

Laboratory Test and Evaluation to Characterize the Cracking Resistance of Asphalt Mixtures (아스팔트 혼합물의 균열 저항성 평가 연구)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.9-15
    • /
    • 2004
  • The cracking resistance of asphalt mixtures is generally evaluated by measuring a single parameter (i.e., Tensile strength, Stiffness). However, the use of a single parameter has been questioned in the evaluation of asphalt mixture cracking performance. The focus of this study was to clearly identify the key properties and characteristics associated with the cracking resistance of asphalt mixtures. Results of fracture, creep, and strength tests at multiple loading rates performed on the modified and unmodified mixtures showed that the mixture cracking resistance was primarily affected by the rate of micro-damage accumulation. This was reflected in the m-value, without affecting the fracture energy limit. It was also observed that the short loading time (elastic) stiffness alone could not differentiate the mixture cracking resistance of the mixtures. It was concluded that the key to characterize the cracking resistance of asphalt mixture is in the evaluation of the combined effects of creep and failure limits. It was also found that a residual dissipated energy parameter measured from Superpave IDT strength test gave the quick and useful way to distinguish the difference of cracking resistance of asphalt mixtures. Failure strain in the longer-term creep test appeared to be a useful parameter for evaluating the combined effects of creep and failure limits of asphalt mixtures.

  • PDF

Decision Support Tool for Evaluating Push and Pull Strategies in the Flow Shop with a Bottleneck Resource

  • Chiadamrong, N.;Techalert, T.;Pichalai, A.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.83-93
    • /
    • 2007
  • This paper gives an attempt to build a decision support tool linked with a simulation software called ARENA for evaluating and comparing the performance of the push and pull material driven strategies operating in the flow shop environment with a bottleneck resource as the shop's constraint. To be fair for such evaluation, the comparison must be made fairly under the optimal setting of both systems' operating parameters. In this study, an optimal-seeking heuristic algorithm, Genetic Algorithm (GA), is employed to suggest a systems' best design based on the economic consideration, which is the profit generated from the system. Results from the study have revealed interesting outcomes, letting us know the strength and weakness of the push and pull mechanisms as well as the effect of each operating parameter to the overall system's financial performance.

Evaluation on a Miller Cam for Improving the Fuel Consumption of a Large Diesel Engine (대형 디젤 엔진의 연비 향상을 위한 Miller Cam 평가)

  • Song, Changhoon;Wang, Tae Joong;Im, Heejun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Miller timing is one of the promising ways which can improve the fuel consumption of internal combustion engines. Indeed, Miller timing employing an early intake valve close is widely applied to large diesel and gas engines to enhance performance and reduce NOx emissions. In this study, performance evaluation is carried out by 1-D cycle simulation in order to estimate the effect of Miller CAM timing before BDC for a 32 L turbocharged diesel engine. To optimize Miller CAM timing, a single stage turbocharger is matched with an early intake valve close since boost pressure is a significant parameter that can control compression work in a turbocharged engine. The engine simulation result shows that there is enough potential to improve fuel consumption rate and also reduce NOx emissions at the same time.Abstract here.

A Study on Optimization of the Weil-Dobkes Synthetic Short-Circuit Tests (Weil-Dobke 합성단락시험로의 최적화 연구)

  • 김맹현;고희석
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.287-292
    • /
    • 2001
  • This paper deals with the configuration, operating principles, systematic calculation method of parameter and optimization method of test circuit for parallel current injection method, series voltage injection method and hybrid synthetic test method as the method for performance test of circuit breaker with extra high interrupting capacity. The test method depicted above is applied to short-circuit making and breaking test (operating sequence :Os CdOs, Od-CdOs) and out-of-phase tests(operating sequence :Os, CdOs) for performance test of the newly-developed 420kV, 50kA and 800kV 50kV puffer-type gas circuit-breaker according to IEC 60056 and IEC 60427. The testing results, evaluation of equivalence for test and analyzed results are also presented in this paper.

  • PDF

Performance Evaluation of Distributed Clustering Protocol under Distance Estimation Error

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The application of Wireless Sensor Networks requires a wise utilization of limited energy resources. Therefore, a wide range of routing protocols with a motivation to prolong the lifetime of a network has been proposed in recent years. Hierarchical clustering based protocols have become an object of a large number of studies that aim to efficiently utilize the limited energy of network components. In this paper, the effect of mismatch in parameter estimation is discussed to evaluate the robustness of a distanced based algorithm called distributed clustering protocol in homogeneous and heterogeneous environment. For quantitative analysis, performance simulations for this protocol are carried out in terms of the network lifetime which is the main criteria of efficiency for the energy limited system.

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

Fuzzy Hybrid Control of Rhino XR-2 Robot (Rhino XR-2 로보트의 퍼지 혼성 제어)

  • Byun, Dae-Yeal;Sung, Hong-Suk;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.299-303
    • /
    • 1993
  • There can be two methods in control systems: one is to use a linear controller, the other is to use a nonlinear controller. The PID controller and the fuzzy controller can be said to belong the linear and the nonlinear controller respectively. In this paper, a new hybrid controller which is consist of the linear PID controller of which the gain is tuned and the nonlinear self tuning fuzzy controller is proposed. In the PID controller, an algorithm which parameterizes the proportional, the intergral, and the derivative gain as a single parameter is used to improve the performance of the PID controller. In the self tuning fuzzy controller, an algorithm which changes the shape of the triangle membership function and changes the scaling factor which is multiplied to the error and the error change. The evaluation of the performance of the suggested algorithm is carried on by the simulation for the Rhino XH-2 robot manipulator with 5 links revolute joints.

  • PDF

Experimental Performance Evaluation of Profibus-FDL and Implementation of Profibus Master Board (Profibus Master FDL 보드 구현과 파라미터 변경에 따른 성능평가)

  • Park, Jong-Min;Hong, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.434-438
    • /
    • 2002
  • Profibus is a open industrial communication system for a wide range of applications in manufacturing and process automation. In this study presented in this article, implementation of Profibus master board is implemented. Using an experimental model, this study investigates the relationship between network parameter in the Profibus data link layer and the network performance. Base on the results, this study suggests some factors that should be considered when a Profibus-based automation system is designed and implemented.

  • PDF