• Title/Summary/Keyword: Performance of File System

Search Result 530, Processing Time 0.026 seconds

Sim-Hadoop : Leveraging Hadoop Distributed File System and Parallel I/O for Reliable and Efficient N-body Simulations (Sim-Hadoop : 신뢰성 있고 효율적인 N-body 시뮬레이션을 위한 Hadoop 분산 파일 시스템과 병렬 I / O)

  • Awan, Ammar Ahmad;Lee, Sungyoung;Chung, Tae Choong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.476-477
    • /
    • 2013
  • Gadget-2 is a scientific simulation code has been used for many different types of simulations like, Colliding Galaxies, Cluster Formation and the popular Millennium Simulation. The code is parallelized with Message Passing Interface (MPI) and is written in C language. There is also a Java adaptation of the original code written using MPJ Express called Java Gadget. Java Gadget writes a lot of checkpoint data which may or may not use the HDF-5 file format. Since, HDF-5 is MPI-IO compliant, we can use our MPJ-IO library to perform parallel reading and writing of the checkpoint files and improve I/O performance. Additionally, to add reliability to the code execution, we propose the usage of Hadoop Distributed File System (HDFS) for writing the intermediate (checkpoint files) and final data (output files). The current code writes and reads the input, output and checkpoint files sequentially which can easily become bottleneck for large scale simulations. In this paper, we propose Sim-Hadoop, a framework to leverage HDFS and MPJ-IO for improving the I/O performance of Java Gadget code.

MBS-LVM: A High-Performance Logical Volume Manager for Memory Bus-Connected Storages over NUMA Servers

  • Lee, Yongseob;Park, Sungyong
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.151-158
    • /
    • 2019
  • With the recent advances of memory technologies, high-performance non-volatile memories such as non-volatile dual in-line memory module (NVDIMM) have begun to be used as an addition or an alternative to server-side storages. When these memory bus-connected storages (MBSs) are installed over non-uniform memory access (NUMA) servers, the distance between NUMA nodes and MBSs is one of the crucial factors that influence file processing performance, because the access latency of a NUMA system varies depending on its distance from the NUMA nodes. This paper presents the design and implementation of a high-performance logical volume manager for MBSs, called MBS-LVM, when multiple MBSs are scattered over a NUMA server. The MBS-LVM consolidates the address space of each MBS into a single global address space and dynamically utilizes storage spaces such that each thread can access an MBS with the lowest latency possible. We implemented the MBS-LVM in the Linux kernel and evaluated its performance by porting it over the tmpfs, a memory-based file system widely used in Linux. The results of the benchmarking show that the write performance of the tmpfs using MBS-LVM has been improved by up to twenty times against the original tmpfs over a NUMA server with four nodes.

A Scheme on High-Performance Caching and High-Capacity File Transmission for Cloud Storage Optimization (클라우드 스토리지 최적화를 위한 고속 캐싱 및 대용량 파일 전송 기법)

  • Kim, Tae-Hun;Kim, Jung-Han;Eom, Young-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.670-679
    • /
    • 2012
  • The recent dissemination of cloud computing makes the amount of data storage to be increased and the cost of storing the data grow rapidly. Accordingly, data and service requests from users also increases the load on the cloud storage. There have been many works that tries to provide low-cost and high-performance schemes on distributed file systems. However, most of them have some weaknesses on performing parallel and random data accesses as well as data accesses of frequent small workloads. Recently, improving the performance of distributed file system based on caching technology is getting much attention. In this paper, we propose a CHPC(Cloud storage High-Performance Caching) framework, providing parallel caching, distributed caching, and proxy caching in distributed file systems. This study compares the proposed framework with existing cloud systems in regard to the reduction of the server's disk I/O, prevention of the server-side bottleneck, deduplication of the page caches in each client, and improvement of overall IOPS. As a results, we show some optimization possibilities on the cloud storage systems based on some evaluations and comparisons with other conventional methods.

Gen-Z memory pool system implementation and performance measurement

  • Kwon, Won-ok;Sok, Song-Woo;Park, Chan-ho;Oh, Myeong-Hoon;Hong, Seokbin
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.450-461
    • /
    • 2022
  • The Gen-Z protocol is a memory semantic protocol between the memory and CPU used in computer architectures with large memory pools. This study presents the implementation of the Gen-Z hardware system configured using Gen-Z specification 1.0 and reports its performance. A hardware prototype of a DDR4 Gen-Z memory pool with an optimized character, a block device driver, and a file system for the Gen-Z hardware was designed. The Gen-Z IP was targeted to the FPGA, and a 512 GB Gen-Z memory pool was configured on an ×86 server. In the experiments, the latency and throughput of the Gen-Z memory were measured and compared with those of the local memory, SATA SSD, and NVMe using character or block device interfaces. The Gen-Z hardware exhibited superior throughput and latency performance compared with SATA SSD and NVMe at block sizes under 4 kB. The MySQL and File IO benchmark of Gen-Z showed good write performance in all block sizes and threads. Besides, it showed low latency in RocksDB's fillseq dbbench using the ext4 direct access filesystem.

Design and Implementation of Buffer Cache for EXT3NS File System (EXT3NS 파일 시스템을 위한 버퍼 캐시의 설계 및 구현)

  • Sohn, Sung-Hoon;Jung, Sung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2202-2211
    • /
    • 2006
  • EXT3NS is a special-purpose file system for large scale multimedia streaming servers. It is built on top of streaming acceleration hardware device called Network-Storage card. The EXT3NS file system significantly improves streaming performance by eliminating memory-to-memory copy operations, i.e. sending video/audio from disk directly to network interface with no main memory buffering. In this paper, we design and implement a buffer cache mechanism, called PMEMCACHE, for EXT3NS file system. We also propose a buffer cache replacement method called ONS for the buffer cache mechanism. The ONS algorithm outperforms other existing buffer replacement algorithms in distributed multimedia streaming environment. In EXT3NS with PMEMCACHE, operation is 33MB/sec and random read operation is 2.4MB/sec. Also, the buffer replacement ONS algorithm shows better performance by 600KB/sec than other buffer cache replacement policies. As a result PMEMCACHE and an ONS can greatly improve the performance of multimedia steaming server which should supportmultiple client requests at the same time.

A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array) (AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구)

  • Kim, Young Man;Han, Jaeil
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

A CPU-GPGPU Based Multithread File Chunking System (CPU-GPGPU 를 기반으로 멀티스레드 파일청킹 시스템)

  • Tang, Zhi;Won, You-Jip
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.336-337
    • /
    • 2011
  • The popularity of general purpose GPU(GPGPU)makes the CPU-GPGPU heterogeneous architecture normal. Therefore, tradeoff the usage of CPU and GPGPU becomes a way to improve performance of programs. In this work, we exploit the properties of the CPU-GPGPU heterogeneous architecture and use them to accelerate the content based chunking operation of deduplication. We built a prototype system which is able to coordinate CPU and GPGPU to chunk file and has been proven to have a better performance compared to using either CPU or GPGPU alone.

Shannon's Information Theory and Document Indexing (Shannon의 정보이론과 문헌정보)

  • Chung Young Mee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.6
    • /
    • pp.87-103
    • /
    • 1979
  • Information storage and retrieval is a part of general communication process. In the Shannon's information theory, information contained in a message is a measure of -uncertainty about information source and the amount of information is measured by entropy. Indexing is a process of reducing entropy of information source since document collection is divided into many smaller groups according to the subjects documents deal with. Significant concepts contained in every document are mapped into the set of all sets of index terms. Thus index itself is formed by paired sets of index terms and documents. Without indexing the entropy of document collection consisting of N documents is $log_2\;N$, whereas the average entropy of smaller groups $(W_1,\;W_2,...W_m)$ is as small $(as\;(\sum\limits^m_{i=1}\;H(W_i))/m$. Retrieval efficiency is a measure of information system's performance, which is largely affected by goodness of index. If all and only documents evaluated relevant to user's query can be retrieved, the information system is said $100\%$ efficient. Document file W may be potentially classified into two sets of relevant documents and non-relevant documents to a specific query. After retrieval, the document file W' is reclassified into four sets of relevant-retrieved, relevant-not retrieved, non-relevant-retrieved and non-relevant-not retrieved. It is shown in the paper that the difference in two entropies of document file Wand document file W' is a proper measure of retrieval efficiency.

  • PDF

Web based File Transmission System using HTML5 (HTML5를 활용한 웹 기반 파일 전송 시스템)

  • Kim, Yu-Doo;Kim, Mo-Han;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.968-974
    • /
    • 2012
  • After launched various smart devices such as smart phone and tablet PC, people who using smart devices are provided various services. Especially, contents sharing technology is utilized in any devices. But current contents sharing systems are made on various versions for various smart devices. These methods will be raising cost for development of application. Therefore it must using web technology for reducing cost. In this paper, we had analyzed performance of file transmission using web technology and compared with application based system.

Performance Analysis of Open Source Based Distributed Deduplication File System (오픈 소스 기반 데이터 분산 중복제거 파일 시스템의 성능 분석)

  • Jung, Sung-Ouk;Choi, Hoon
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.623-631
    • /
    • 2014
  • Comparison of two representative deduplication file systems, LessFS and SDFS, shows that Lessfs is better in execution time and CPU utilization while SDFS is better in storage usage (around 1/8 less than general file systems). In this paper, a new system is proposed where the advantages of SDFS and Lessfs are combined. The new system uses multiple DFEs and one DSE to maintain the integrity and consistency of the data. An evaluation study to compare between Single DFE and Dual DFE indicates that the Dual DFE was better than the Single DFE. The Dual DFE reduced the CPU usage and provided fast deduplication time. This reveals that proposed system can be used to solve the problem of an increase in large data storage and power consumption.