• Title/Summary/Keyword: Performance evaluation

Search Result 18,018, Processing Time 0.046 seconds

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

An Exploratory Study on ChatGPT's Performance to Answer to Police-related Traffic Laws: Using the Driver's License Test and the Road Traffic Accident Appraiser (ChatGPT의 경찰 관련 교통법규 응답 능력에 대한 탐색적 연구 - 운전면허 학과시험과 도로교통사고감정사 1차 시험을 대상으로 -)

  • Sang-yub Lee
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study conducted preliminary study to identify effective ways to use ChatGPT in traffic policing by analyzing ChatGPT's responses to the driver's license test and the road traffic accident appraiser test. I collected ChatGPT responses for the driver's license test item pool and the road traffic accident appraiser test using the OpenAI API with Python code for 30 iterative experiments, and analyzed the percentage of correct answers by test, year, section, and consistency. First, the average correct answer rate for the driver's license test and the for road traffic accident appraisers test was 44.60% and 35.45%, respectively, which was lower than the pass criteria, and the correct answer rate after 2022 was lower than the average correct answer rate. Second, the percentage of correct answers by section ranged from 29.69% to 56.80%, showing a significant difference. Third, it consistently produced the same response more than 95% of the time when the answer was correct. To effectively utilize ChatGPT, it is necessary to have user expertise, evaluation data and analysis methods, design a quality traffic law corpus and periodic learning.

Evaluation of Spalling Characteristics and Fire Resistance Fiber-Entrained Mixed Cement Concrete at Ultra-High Temperatures (섬유가 혼입된 혼합시멘트 콘크리트의 초고온에서의 폭렬특성 및 내화성능 평가)

  • Jun-Hwan Oh;Ju-Hyun Cheon;Man-Soo Lee;Sung-Won Yoo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.23-29
    • /
    • 2023
  • The goal of this study is to evaluate the bursting characteristics and fire resistance performance of mixed cement concrete containing fibers at very high temperatures. For this purpose, FA-based, Slag-based, and each mix according to the amount of fiber mixed were heated to room temperature, 150℃, 300℃, 600℃, and 900℃, and then the burst shape, compressive strength, and elastic modulus were measured and evaluated. As a result of the experiment, it was found that relatively more surface damage occurred in FA-based specimens when heated at ultra-high temperatures than in slag-based specimens, and there was a difference between the mix without fibers and the mix with fibers when heated at ultra-high temperatures, that is, at 900℃. In the mix without fibers, a decrease in strength of more than 5% occurred. In addition, the elastic modulus also showed the same phenomenon as the compressive strength, and in particular, the decrease in elastic modulus was found to be greater than the amount of decrease in compressive strength. Meanwhile, estimation equations for compressive strength and elastic modulus according to heating temperature were statistically proposed.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

Improving Thermal Conductivity of Neutron Absorbing B4C/Al Composites by Introducing cBN Reinforcement (cBN 입자상 강화재 첨가에 따른 중성자 흡수용 B4C/Al 복합재의 열전도도 변화 연구)

  • Minwoo Kang;Donghyun Lee;Tae Gyu Lee;Junghwan Kim;Sang-Bok Lee;Hansang Kwon;Seungchan Cho
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.435-440
    • /
    • 2023
  • This study aimed to enhance the thermal conductivity of B4C/Al composite materials, commonly used in transport/storage containers for spent nuclear fuel, by incorporating both boron carbide (B4C) and cubic boron nitride(cBN) as reinforcing agents in an aluminum (Al) matrix. The composite materials were successfully manufactured through a stir casting process and practical neutron-absorbing materials were obtained by rolling the fabricated composite ingot. The evaluation of the thermal conductivity of the fabricated composites was carried out because thermal conductivity is critical for neutron absorbing materials. The thermal conductivity measurement results indicated an approximately 3% increase in thermal conductivity under the same volume fraction when compared to composite materials using only B4C particles. Through neutron absorption cross-sectional area calculations, it was confirmed that the neutron absorption capability decreased to a negligible level. Based on the findings of this study, new design approaches for neutron absorption materials are proposed, contributing to the development of high-performance transport/storage containers.

A Machine Learning-Based Encryption Behavior Cognitive Technique for Ransomware Detection (랜섬웨어 탐지를 위한 머신러닝 기반 암호화 행위 감지 기법)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.12
    • /
    • pp.55-62
    • /
    • 2023
  • Recent ransomware attacks employ various techniques and pathways, posing significant challenges in early detection and defense. Consequently, the scale of damage is continually growing. This paper introduces a machine learning-based approach for effective ransomware detection by focusing on file encryption and encryption patterns, which are pivotal functionalities utilized by ransomware. Ransomware is identified by analyzing password behavior and encryption patterns, making it possible to detect specific ransomware variants and new types of ransomware, thereby mitigating ransomware attacks effectively. The proposed machine learning-based encryption behavior detection technique extracts encryption and encryption pattern characteristics and trains them using a machine learning classifier. The final outcome is an ensemble of results from two classifiers. The classifier plays a key role in determining the presence or absence of ransomware, leading to enhanced accuracy. The proposed technique is implemented using the numpy, pandas, and Python's Scikit-Learn library. Evaluation indicators reveal an average accuracy of 94%, precision of 95%, recall rate of 93%, and an F1 score of 95%. These performance results validate the feasibility of ransomware detection through encryption behavior analysis, and further research is encouraged to enhance the technique for proactive ransomware detection.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.

Proof-of-principle Experimental Study of the CMA-ES Phase-control Algorithm Implemented in a Multichannel Coherent-beam-combining System (다채널 결맞음 빔결합 시스템에서 CMA-ES 위상 제어 알고리즘 구현에 관한 원리증명 실험적 연구)

  • Minsu Yeo;Hansol Kim;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.107-114
    • /
    • 2024
  • In this study, the feasibility of using the covariance-matrix-adaptation-evolution-strategy (CMA-ES) algorithm in a multichannel coherent-beam-combining (CBC) system was experimentally verified. We constructed a multichannel CBC system utilizing a spatial light modulator (SLM) as a multichannel phase-modulator array, along with a coherent light source at 635 nm, implemented the stochastic-parallel-gradient-descent (SPGD) and CMA-ES algorithms on it, and compared their performances. In particular, we evaluated the characteristics of the CMA-ES and SPGD algorithms in the CBC system in both 16-channel rectangular and 19-channel honeycomb formats. The results of the evaluation showed that the performances of the two algorithms were similar on average, under the given conditions; However, it was verified that under the given conditions the CMA-ES algorithm was able to operate with more stable performance than the SPGD algorithm, as the former had less operational variation with the initial phase setting than the latter. It is emphasized that this study is the first proof-of-principle demonstration of the CMA-ES phase-control algorithm in a multichannel CBC system, to the best of our knowledge, and is expected to be useful for future experimental studies of the effects of additional channel-number increments, or external-phase-noise effects, in multichannel CBC systems based on the CMA-ES phase-control algorithm.