• Title/Summary/Keyword: Performance design method

Search Result 8,697, Processing Time 0.047 seconds

An Efficient ECU Analysis Technology through Non-Random CAN Fuzzing (Non-Random CAN Fuzzing을 통한 효율적인 ECU 분석 기술)

  • Kim, Hyunghoon;Jeong, Yeonseon;Choi, Wonsuk;Jo, Hyo Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1115-1130
    • /
    • 2020
  • Modern vehicles are equipped with a number of ECUs(Electronic Control Units), and ECUs can control vehicles efficiently by communicating each other through CAN(Controller Area Network). However, CAN bus is known to be vulnerable to cyber attacks because of the lack of message authentication and message encryption, and access control. To find these security issues related to vehicle hacking, CAN Fuzzing methods, that analyze the vulnerabilities of ECUs, have been studied. In the existing CAN Fuzzing methods, fuzzing inputs are randomly generated without considering the structure of CAN messages transmitted by ECUs, which results in the non-negligible fuzzing time. In addition, the existing fuzzing solutions have limitations in how to monitor fuzzing results. To deal with the limitations of CAN Fuzzing, in this paper, we propose a Non-Random CAN Fuzzing, which consider the structure of CAN messages and systematically generates fuzzing input values that can cause malfunctions to ECUs. The proposed Non-Random CAN Fuzzing takes less time than the existing CAN Fuzzing solutions, so it can quickly find CAN messages related to malfunctions of ECUs that could be originated from SW implementation errors or CAN DBC(Database CAN) design errors. We evaluated the performance of Non-Random CAN Fuzzing by conducting an experiment in a real vehicle, and proved that the proposed method can find CAN messages related to malfunctions faster than the existing fuzzing solutions.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.

Blocking Intelligent Dos Attack with SDN (SDN과 허니팟 기반 동적 파라미터 조절을 통한 지능적 서비스 거부 공격 차단)

  • Yun, Junhyeok;Mun, Sungsik;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • With the development of network technology, the application area has also been diversified, and protocols for various purposes have been developed and the amount of traffic has exploded. Therefore, it is difficult for the network administrator to meet the stability and security standards of the network with the existing traditional switching and routing methods. Software Defined Networking (SDN) is a new networking paradigm proposed to solve this problem. SDN enables efficient network management by programming network operations. This has the advantage that network administrators can flexibly respond to various types of attacks. In this paper, we design a threat level management module, an attack detection module, a packet statistics module, and a flow rule generator that collects attack information through the controller and switch, which are components of SDN, and detects attacks based on these attributes of SDN. It proposes a method to block denial of service attacks (DoS) of advanced attackers by programming and applying honeypot. In the proposed system, the attack packet can be quickly delivered to the honeypot according to the modifiable flow rule, and the honeypot that received the attack packets analyzed the intelligent attack pattern based on this. According to the analysis results, the attack detection module and the threat level management module are adjusted to respond to intelligent attacks. The performance and feasibility of the proposed system was shown by actually implementing the proposed system, performing intelligent attacks with various attack patterns and attack levels, and checking the attack detection rate compared to the existing system.

A Study on the System for AI Service Production (인공지능 서비스 운영을 위한 시스템 측면에서의 연구)

  • Hong, Yong-Geun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.323-332
    • /
    • 2022
  • As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.

The Estimation of Appropriate Mixing Amount of Cement-Bentonite Cutoff Walls for Repair and Reinforcement of Reservoir Embankments (저수지 제체의 보수·보강용 Cement-Bentonite 벽체의 적정혼합량 산정)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.27-32
    • /
    • 2021
  • Due to heavy rainfall and typhoons caused by climate change, it has become common to witness heavy rain that exceeds the design frequency of agricultural reservoirs. This has brought greater attention to the safety of irrigation facilities including agricultural reservoirs. Out of approximately 17,740 reservoirs available in Korea, 83.87% were built before 1970. To ensure the safety of these old reservoirs, their embankments are being repaired and reinforced using various techniques. Among these techniques, using the cement-bentonite cutoff wall makes it possible to construct diaphragm walls with slurry composed of cement and bentonite, while excavation. The advantages of this technique include that it is simple and fast, and ensures the uniformity of cutoff walls by enabling the immediate application of the replacement method to excavation areas; thus excellent performance is guaranteed. However, despite these advantages, the technique is not commonly used in Korea. Thus, this study investigated the changes in strength and permeability by varying the mix ratio of cement and bentonite. As a major experimental results, when the cement of 200 kg/m3 and the bentonite of 60 to 80 kg/m3 is most suitable for the repair and reinforcement of the reservoir embankments.

The Effect of Theratainment Swiss Ball Exercise on the Upper Limb Function, Pain and disability, Daily Activities of a Patient with Axillary Nerve Injury: Single Subject (테라테인먼트 스위스 볼 운동이 겨드랑신경 손상 환자의 상지기능, 통증 및 장애, 일상생활활동에 미치는 영향 : 개별대상연구)

  • Son, Bo-Young;Bang, Yo-Soon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.431-442
    • /
    • 2020
  • This study examined the effect of the theratainment swiss ball exercise on the upper limb function, pain, and daily activities of a patient with axillary nerve injury. The research duration was from November 5th, 2019 to February 25th, 2020. The research subject was a 23-year-old female patient living in the metropolitan city of G in South Korea, and the A-B-A' type of single-subject experimental research design was used. In this study, repeated training was provided to the patient in the form of exercises employing different directions and gradually increased weights. The training increased the structural stability and mobility of the shoulder and was effective for pain relief as it strengthened shoulder function. The training helped the subject improve her posture change adaptability and reaction ability in different environments and ultimately enabled her to increase and maximize her performance of independent daily activities. This study thus demonstrated the positive effect of the Swiss ball exercise on the upper limb function, pain and disability, daily activities of a patient with axillary nerve injury and confirmed the potential of the exercise as an intervention method. Continued investigation to develop and test the effect of the Swiss ball exercise will be required for it to be used professionally as a therapeutic approach by occupational therapists in treating a variety of patients.

W-type hexaferrite-epoxy composites for wide-band radar absorption (광대역 레이다 흡수용 W-type 육방정 페라이트-에폭시 복합 소재)

  • Su-Mi Lee;Tae-Woo Lee;Young-Min Kang;Hyemin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.42-50
    • /
    • 2023
  • In this study, hexagonal ferrite powder with chemical formula SrZn2-xCoxFe16O27 was synthesized by a solid-state reaction method and its electromagnetic (EM) wave absorption characteristics were evaluated in the frequency range of 0.1-18 GHz with absorber thickness range of 0 - 10 mm. Reflection loss (RL) affecting electromagnetic wave absorption performance was calculated based on the transmission line theory using measured complex permeabilities and permittivities. RL spectra were also directly measured for some samples. They were well matched with calculated results. High-frequency complex permeability characteristics were changed gradually according to the amount of Co substitution (x). The EM wave absorption frequency band could be tuned accordingly. Hexaferrite samples with x = 1.0, 1.25, and 1.5 exhibited remarkable maximum electromagnetic wave absorption performances with minimum RL (RLmin) lowered than -50 dB. They also showed a very broad frequency band (Δf > 10 GHz) in which more than 90% of the EM wave energy absorption occurred (RL ≤ -10 dB).

Study on the Effects of Flip Learning-based Simulation Education on the Learning Flow, Learning Confidence, Communication Skills, and Clinical Competence of Nursing Students (간호대학생의 학습몰입, 학습자신감, 의사소통능력과 임상수행능력에 대한 플립러닝 기반 시뮬레이션 교육 효과에 대한 연구)

  • Shim, Chung-Sin
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.541-549
    • /
    • 2019
  • The purpose of this study was to test the effects of flip learning-based simulation practice education on the learning flow, learning confidence, communication skills, and clinical competence ability of nursing student. This study used a one group, pre-post test design. We collected the data from 65 4th grade nursing students. Flip learning-based simulation practice education was conducted from March 5th to April 17th, 2019. The collected data were analyzed using SPSS WIN 21.0 program. The result of study were follows. After the flip learning-based simulation practice education, there were significant increased in learning flow(t=-7.548, p<.001), learning confidence(t=-9.163, p<.001), communication skills(t=-6.506, p<.001) and clinical competence(t=-6.733, p<.001). After the flip learning-based simulation practice, clinical performance was found to be positively correlated with learning flow(r=.627, p<.001), learning confidence(r=.513, p<.001) and communication skills(r=.328, p<.008). learning flow and learning confidence(r=.528, p<.001), communication skills and learning flow(r=.332, p<.007) also showed a positive correlation. Therefore, flip learning-based simulation practice education for nursing student could be effective nursing education method.

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.