• Title/Summary/Keyword: Performance Enhanced Model

Search Result 611, Processing Time 0.022 seconds

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach

  • Zhang, Yi;Kim, Chul-Woo;Zhang, Lian;Bai, Yongtao;Yang, Hao;Xu, Xiangyang;Zhang, Zhenhao
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.285-299
    • /
    • 2020
  • Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged structural condition.

Mathematical Analysis Power Spectrum of M-ary MSK and Detection with Optimum Maximum Likelihood

  • Niu, Zheng;Jiang, Yuzhong;Jia, Shuyang;Huang, Zhi;Zou, Wenliang;Liu, Gang;Li, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2900-2922
    • /
    • 2021
  • In this paper, the power spectral density(PSD) for Multilevel Minimum Shift Keyed signal with modulation index h = 1/2 (M-ary MSK) are derived using the mathematical method of the Markov Chain model. At first, according to an essential requirement of the phase continuity characteristics of MSK signals, a complete model of the whole process of signal generation is built. Then, the derivations for autocorrelation functions are carried out precisely. After that, we verified the correctness and accuracy of the theoretical derivation by comparing the derived results with numerical simulations using MATLAB. We also divided the spectrum into four components according to the derivation. By analyzing these figures in the graphic, each component determines the characteristics of the spectrum. It is vital for enhanced spectral characteristics. To more visually represent the energy concentration of the main flap and the roll-down speed of the side flap, the specific out-of-band power of M-ary MSK is given. OMLCD(Optimum Maximum Likelihood Coherent Detection) of M-ary MSK is adopted to compare the signal received with prepared in advance in a code element T to go for the best. And M-ary MSK BER(Bit Error Rate) is compared with the same ary PSK (Phase Shift Keying) with M=2,4,6,8. The results show the detection method could improve performance by increasing the length of L(memory inherent) in the phase continuity.

GeoAI-Based Forest Fire Susceptibility Assessment with Integration of Forest and Soil Digital Map Data

  • Kounghoon Nam;Jong-Tae Kim;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.107-115
    • /
    • 2024
  • This study assesses forest fire susceptibility in Gangwon-do, South Korea, which hosts the largest forested area in the nation and constitutes ~21% of the country's forested land. With 81% of its terrain forested, Gangwon-do is particularly susceptible to wildfires, as evidenced by the fact that seven out of the ten most extensive wildfires in Korea have occurred in this region, with significant ecological and economic implications. Here, we analyze 480 historical wildfire occurrences in Gangwon-do between 2003 and 2019 using 17 predictor variables of wildfire occurrence. We utilized three machine learning algorithms—random forest, logistic regression, and support vector machine—to construct wildfire susceptibility prediction models and identify the best-performing model for Gangwon-do. Forest and soil map data were integrated as important indicators of wildfire susceptibility and enhanced the precision of the three models in identifying areas at high risk of wildfires. Of the three models examined, the random forest model showed the best predictive performance, with an area-under-the-curve value of 0.936. The findings of this study, especially the maps generated by the models, are expected to offer important guidance to local governments in formulating effective management and conservation strategies. These strategies aim to ensure the sustainable preservation of forest resources and to enhance the well-being of communities situated in areas adjacent to forests. Furthermore, the outcomes of this study are anticipated to contribute to the safeguarding of forest resources and biodiversity and to the development of comprehensive plans for forest resource protection, biodiversity conservation, and environmental management.

Enhanced Machine Learning Preprocessing Techniques for Optimization of Semiconductor Process Data in Smart Factories (스마트 팩토리 반도체 공정 데이터 최적화를 위한 향상된 머신러닝 전처리 방법 연구)

  • Seung-Gyu Choi;Seung-Jae Lee;Choon-Sung Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • The introduction of Smart Factories has transformed manufacturing towards more objective and efficient line management. However, most companies are not effectively utilizing the vast amount of sensor data collected every second. This study aims to use this data to predict product quality and manage production processes efficiently. Due to security issues, specific sensor data could not be verified, so semiconductor process-related training data from the "SAMSUNG SDS Brightics AI" site was used. Data preprocessing, including removing missing values, outliers, scaling, and feature elimination, was crucial for optimal sensor data. Oversampling was used to balance the imbalanced training dataset. The SVM (rbf) model achieved high performance (Accuracy: 97.07%, GM: 96.61%), surpassing the MLP model implemented by "SAMSUNG SDS Brightics AI". This research can be applied to various topics, such as predicting component lifecycles and process conditions.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma

  • Minjae Kim;Jeong Hyun Lee;Leehi Joo;Boryeong Jeong;Seonok Kim;Sungwon Ham;Jihye Yun;NamKug Kim;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek;Ji Ye Lee;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1078-1088
    • /
    • 2022
  • Objective: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal and external validation sets. Results: Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence interval [CI], 0.62-0.89) and 0.77 (95% CI, 0.65-0.88) in the internal and external validation sets, respectively. These were significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40-0.67], p = 0.006), CE-T1WI (0.53 [95% CI, 0.40-0.67], p = 0.012), and clinical parameters (0.53 [95% CI, 0.39-0.67], p = 0.021) in the external validation set. Conclusion: The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive treatment.

The Efficiency Analysis of CRM System in the Hotel Industry Using DEA (DEA를 이용한 호텔 관광 서비스 업계의 CRM 도입 효율성 분석)

  • Kim, Tai-Young;Seol, Kyung-Jin;Kwak, Young-Dai
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.91-110
    • /
    • 2011
  • This paper analyzes the cases where the hotels have increased their services and enhanced their work process through IT solutions to cope with computerization globalization. Also the cases have been studies where national hotels use the CRM solution internally to respond effectively to customers requests, increase customer analysis, and build marketing strategies. In particular, this study discusses the introduction of the CRM solutions and CRM sales business and marketing services using a process for utilizing the presumed, CRM by introducing effective DEA(Data Envelopment Analysis). First, the comparison has done regarding the relative efficiency of L Company with the CCR model, then compared L Company's restaurants and facilities' effectiveness through BCC model. L Company reached a conclusion that it is important to precisely create and manage sales data which are the preliminary data for CRM, and for that reason it made it possible to save sales data generated by POS system on each sales performance database. In order to do that, it newly established Oracle POS system and LORIS POS system concerned with restaurants for food and beverage as well as rooms, and made it possible to stably generate and manage sales data and manage. Moreover, it set up a composite database to control comprehensively the results of work processes during a specific period by collecting customer registration information and made it possible to systematically control the information on sales performances. By establishing a system which unifies database and managing it comprehensively, impeccability of data has been greatly enhanced and a problem which generated asymmetric data could be thoroughly solved. Using data accumulated on the comprehensive database, sales data can be analyzed, categorized, classified through data mining engine imbedded in Polaris CRM and the results can be organized on data mart to provide them in the form of CRM application data. By transforming original sales data into forms which are easy to handle and saving them on data mart separately, it enabled acquiring well-organized data with ease when engaging in various marketing operations, holding a morning meeting and working on decision-making. By using summarized data at data mart, it was possible to process marketing operations such as telemarketing, direct mailing, internet marketing service and service product developments for perceived customers; moreover, information on customer perceptions which is one of CRM's end-products could feed back into the comprehensive database. This research was undertaken to find out how effectively CRM has been employed by comparing and analyzing the management performance of each enterprise site and store after introducing CRM to Hotel enterprises using DEA technique. According to the research results, efficiency evaluation for each site was calculated through input and output factors to find out comparative CRM system usage efficiency of L's Company four sites; moreover, with regard to stores, the sizes of workforce and budget application show a huge difference and so does the each store efficiency. Furthermore, by using the DEA technique, it could assess which sites have comparatively high efficiency and which don't by comparing and evaluating hotel enterprises IT project outcomes such as CRM introduction using the CCR model for each site of the related enterprises. By using the BCC model, it could comparatively evaluate the outcome of CRM usage at each store of A site, which is representative of L Company, and as a result, it could figure out which stores maintain high efficiency in using CRM and which don't. It analyzed the cases of CRM introduction at L Company, which is a hotel enterprise, and precisely evaluated them through DEA. L Company analyzed the customer analysis system by introducing CRM and achieved to provide customers identified through client analysis data with one to one tailored services. Moreover, it could come up with a plan to differentiate the service for customers who revisit by assessing customer discernment rate. As tasks to be solved in the future, it is required to do research on the process analysis which can lead to a specific outcome such as increased sales volumes by carrying on test marketing, target marketing using CRM. Furthermore, it is also necessary to do research on efficiency evaluation in accordance with linkages between other IT solutions such as ERP and CRM system.

Development of a Malignancy Potential Binary Prediction Model Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors

  • Jiejin Yang;Zeyang Chen;Weipeng Liu;Xiangpeng Wang;Shuai Ma;Feifei Jin;Xiaoying Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.344-353
    • /
    • 2021
  • Objective: The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on deep learning algorithm. Materials and Methods: Abdominal contrast-enhanced CT images of 148 pathologically confirmed GIST cases were retrospectively collected for the development of a deep learning classification algorithm. The areas of GIST masses on the CT images were retrospectively labelled by an experienced radiologist. The postoperative pathological mitotic count was considered as the gold standard (high mitotic count, > 5/50 high-power fields [HPFs]; low mitotic count, ≤ 5/50 HPFs). A binary classification model was trained on the basis of the VGG16 convolutional neural network, using the CT images with the training set (n = 108), validation set (n = 20), and the test set (n = 20). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated at both, the image level and the patient level. The receiver operating characteristic curves were generated on the basis of the model prediction results and the area under curves (AUCs) were calculated. The risk categories of the tumors were predicted according to the Armed Forces Institute of Pathology criteria. Results: At the image level, the classification prediction results of the mitotic counts in the test cohort were as follows: sensitivity 85.7% (95% confidence interval [CI]: 0.834-0.877), specificity 67.5% (95% CI: 0.636-0.712), PPV 82.1% (95% CI: 0.797-0.843), NPV 73.0% (95% CI: 0.691-0.766), and AUC 0.771 (95% CI: 0.750-0.791). At the patient level, the classification prediction results in the test cohort were as follows: sensitivity 90.0% (95% CI: 0.541-0.995), specificity 70.0% (95% CI: 0.354-0.919), PPV 75.0% (95% CI: 0.428-0.933), NPV 87.5% (95% CI: 0.467-0.993), and AUC 0.800 (95% CI: 0.563-0.943). Conclusion: We developed and preliminarily verified the GIST mitotic count binary prediction model, based on the VGG convolutional neural network. The model displayed a good predictive performance.

T1 Map-Based Radiomics for Prediction of Left Ventricular Reverse Remodeling in Patients With Nonischemic Dilated Cardiomyopathy

  • Suyon Chang;Kyunghwa Han;Yonghan Kwon;Lina Kim;Seunghyun Hwang;Hwiyoung Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.395-405
    • /
    • 2023
  • Objective: This study aimed to develop and validate models using radiomics features on a native T1 map from cardiac magnetic resonance (CMR) to predict left ventricular reverse remodeling (LVRR) in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods: Data from 274 patients with NIDCM who underwent CMR imaging with T1 mapping at Severance Hospital between April 2012 and December 2018 were retrospectively reviewed. Radiomic features were extracted from the native T1 maps. LVRR was determined using echocardiography performed ≥ 180 days after the CMR. The radiomics score was generated using the least absolute shrinkage and selection operator logistic regression models. Clinical, clinical + late gadolinium enhancement (LGE), clinical + radiomics, and clinical + LGE + radiomics models were built using a logistic regression method to predict LVRR. For internal validation of the result, bootstrap validation with 1000 resampling iterations was performed, and the optimism-corrected area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) was computed. Model performance was compared using AUC with the DeLong test and bootstrap. Results: Among 274 patients, 123 (44.9%) were classified as LVRR-positive and 151 (55.1%) as LVRR-negative. The optimism-corrected AUC of the radiomics model in internal validation with bootstrapping was 0.753 (95% CI, 0.698-0.813). The clinical + radiomics model revealed a higher optimism-corrected AUC than that of the clinical + LGE model (0.794 vs. 0.716; difference, 0.078 [99% CI, 0.003-0.151]). The clinical + LGE + radiomics model significantly improved the prediction of LVRR compared with the clinical + LGE model (optimism-corrected AUC of 0.811 vs. 0.716; difference, 0.095 [99% CI, 0.022-0.139]). Conclusion: The radiomic characteristics extracted from a non-enhanced T1 map may improve the prediction of LVRR and offer added value over traditional LGE in patients with NIDCM. Additional external validation research is required.