• Title/Summary/Keyword: Performance Diagnostic

Search Result 919, Processing Time 0.027 seconds

Implementation of the automatic pulse-power diagnostic system and the discrimination algorithm of four constitutions (사상 체질 판별 알고리즘과 자동 맥진 시스템의 구현)

  • 박승창;김대진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.53-60
    • /
    • 2004
  • This paper is the study for the automatic pulse-power diagnostic system to discriminate the four constitutions with the piezo-sensor module and digital signal processing hardware attached on the patient arm-neck and the statistical decision software instead of the fingers and intelligence of a traditional korean doctor. This system can be used as a important medical equipment because this automatically diagnostic system has shown the excellent performance of the 65∼76% correctness against the 50∼66% correctness which the general korean doctors with knowledge and experiences have shown. Additionally, this paper has discussed the excellent characteristics of the automatic discrimination algorithm of the four constitutions.

Bayesian hierarchical model for the estimation of proper receiver operating characteristic curves using stochastic ordering

  • Jang, Eun Jin;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.205-216
    • /
    • 2019
  • Diagnostic tests in medical fields detect or diagnose a disease with results measured by continuous or discrete ordinal data. The performance of a diagnostic test is summarized using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The diagnostic test is considered clinically useful if the outcomes in actually-positive cases are higher than actually-negative cases and the ROC curve is concave. In this study, we apply the stochastic ordering method in a Bayesian hierarchical model to estimate the proper ROC curve and AUC when the diagnostic test results are measured in discrete ordinal data. We compare the conventional binormal model and binormal model under stochastic ordering. The simulation results and real data analysis for breast cancer indicate that the binormal model under stochastic ordering can be used to estimate the proper ROC curve with a small bias even though the sample sizes were small or the sample size of actually-negative cases varied from actually-positive cases. Therefore, it is appropriate to consider the binormal model under stochastic ordering in the presence of large differences for a sample size between actually-negative and actually-positive groups.

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Assessing the Diagnostic Value of Serum Dickkopf-related Protein 1 Levels in Cancer Detection: a Case-control Study and Meta-analysis

  • Jiang, Xiao-Ting;Ma, Ying-Yu;Guo, Kun;Xia, Ying-Jie;Wang, Hui-Ju;Li, Li;He, Xu-Jun;Huang, Dong-Sheng;Tao, Hou-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9077-9083
    • /
    • 2014
  • Background: This study aimed to summarize the potential diagnostic value of serum DKK1 levels in cancer detection. Materials and Methods: Serum DKK1 was measured using enzyme-linked immunosorbent assay in a case-control study. Then we performed a meta-analysis and the pooled sensitivity, specificity, diagnostic odds ratio, and summary receiver operating characteristic (sROC) curves were used to evaluate the overall test performance. Results: Serum DKK1 levels were found to be significantly upregulated in gastric cancer as compared to controls. ROC curve analysis revealed an AUC of 0.636, indicating the test has the potential to diagnose cancer with poor accuracy. The summary estimates of the pooled sensitivity, specificity and diagnostic odds ratio in meta-analysis were 0.55 with a 95% confidence interval (CI) (0.53-0.57), 0.86 (95%CI, 0.84-0.88) and 12.25 (95%CI, 5.31-28.28), respectively. The area under the sROC was 0.85. Subgroup analysis revealed that the diagnostic accuracy of serum DKK1 in lung cancer (sensitivity: 0.69 with 95%CI, 0.66-0.74; specificity: 0.95 with 95%CI, 0.92-0.97; diagnostic odds ratio: 44.93 with 95%CI, 26.19-77.08) was significantly higher than for any other cancer. Conclusions: Serum DKK1 might be useful as a noninvasive method for confirmation of cancer diagnosis, particularly in the case of lung cancer.

Detection of MicroRNA-21 Expression as a Potential Screening Biomarker for Colorectal Cancer: a Meta-analysis

  • Jiang, Jian-Xin;Zhang, Na;Liu, Zhong-Min;Wang, Yan-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7583-7588
    • /
    • 2014
  • Background: Colorectal cancer (CRC) is a major cause of cancer-related death and cancer-related incidence worldwide. The potential of microRNA-21 (miR-21) as a biomarker for CRC detection has been studied in several studies. However, the results were inconsistent. Therefore, we conducted the present meta-analysis to systematically assess the diagnostic value of miR-21 for CRC. Materials and Methods: Using a random-effect model, the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to evaluate the diagnostic performance of miR-21 for CRC. A summary receiver operating characteristic (SROC) curve and an area under the curve (AUC) were also generated to assess the diagnosis accuracy of miR-21 for CRC. Q test and I2 statistics were used to assess between-study heterogeneity. Publication bias was evaluated by the Deeks' funnel plot asymmetry test. Results: A total of 986 CRC patients and 702 matched healthy controls from 8 studies were involved in the meta-analysis. The pooled results for SEN, SPE, PLR, NLR, DOR, and AUC were 57% (95%CI: 39%-74%), 87% (95%CI: 78%-93%), 4.4 (95%CI: 2.4-8.0), 0.49 (95%CI: 0.32-0.74), 9 (95%CI: 4-22), and 0.83 (95%CI: 0.79-0.86), respectively. Subgroup analyses further suggested that blood-based studies showed a better diagnostic accuracy compared with feces-based studies, indicating that blood may be a better matrix for miR-21 assay and CRC detection. Conclusions: Our findings suggest that miR-21 has a potential diagnostic value for CRC with a moderate level of overall diagnostic accuracy. Hence, it could be used as auxiliary means for the initial screening of CRC and avoid unnecessary colonoscopy, which is an invasive and expensive procedure.

Role of Contrast-Enhanced Ultrasound as a Second-Line Diagnostic Modality in Noninvasive Diagnostic Algorithms for Hepatocellular Carcinoma

  • Hyo-Jin Kang;Jeong Min Lee;Jeong Hee Yoon;Joon Koo Han
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.354-365
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of contrast-enhanced ultrasound (CEUS) and its role as a second-line imaging modality after gadoxetate-enhanced MRI (Gd-EOB-MRI) in the diagnosis of hepatocellular carcinoma (HCC) among at risk observations. Materials and Methods: We prospectively enrolled participants at risk of HCC with treatment-naïve solid hepatic observations (≥ 1 cm) of Liver Imaging Reporting and Data System (LR)-3/4/5/M during surveillance and performed Gd-EOB-MRI. A total of one hundred and three participants with 103 hepatic observations (mean size, 28.2 ± 24.5 mm; HCCs [n = 79], non-HCC malignancies [n = 15], benign [n = 9]; diagnosed by pathology [n = 57], or noninvasive method [n = 46]) were included in this study. The participants underwent CEUS with sulfur hexafluoride. Arterial phase hyperenhancement (APHE) and washout on Gd-EOB-MRI and CEUS were evaluated. The distinctive washout in CEUS was defined as mild washout 60 seconds after contrast injection. The diagnostic ability of Gd-EOB-MRI and of CEUS as a second-line modality for HCC were determined according to the European Association for the Study of the Liver (EASL) and the Korean Liver Cancer Association and National Cancer Center (KLCA-NCC) guidelines. The diagnostic abilities of both imaging modalities were compared using the McNemar's test. Results: The sensitivity of CEUS (60.8%) was lower than that of Gd-EOB-MRI (72.2%, p = 0.06 by EASL; 86.1%, p < 0.01 by KLCA-NCC); however, the specificity was 100%. By performing CEUS on the inconclusive observations in Gd-EOB-MRI, HCCs without APHE (n = 10) or washout (n = 12) on Gd-EOB-MRI further presented APHE (80.0%, 8/10) or distinctive washout (66.7%, 8/12) on CEUS, and more HCCs were diagnosed than with Gd-EOB-MRI alone (sensitivity: 72.2% vs. 83.5% by EASL, p < 0.01; 86.1% vs. 91.1% by KCLA-NCC, p = 0.04). There were no false-positive cases for HCC on CEUS. Conclusion: The addition of CEUS to Gd-EOB-MRI as a second-line diagnostic modality increases the frequency of HCC diagnosis without changing the specificities.

Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects

  • Kim, Jun Ho;Abdala-Junior, Reinaldo;Munhoz, Luciana;Cortes, Arthur Rodriguez Gonzalez;Watanabe, Plauto Christopher Aranha;Costa, Claudio;Arita, Emiko Saito
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.133-139
    • /
    • 2020
  • Purpose: This study compared 2 cone-beam computed tomography (CBCT) systems in the detection of mechanically simulated peri-implant buccal bone defects in dry human mandibles. Materials and Methods: Twenty-four implants were placed in 7 dry human mandibles. Peri-implant bone defects were created in the buccal plates of 16 implants using spherical burs. All mandibles were scanned using 2 CBCT systems with their commonly used acquisition protocols: i-CAT Gendex CB-500 (Imaging Sciences, Hatfield, PA, USA; field of view [FOV], 8 cm×8 cm; voxel size, 0.125 mm; 120 kVp; 5 mA; 23 s) and Orthopantomograph OP300 (Intrumentarium, Tuusula, Finland; FOV, 6 cm×8 cm; voxel size, 0.085 mm; 90 kVp; 6.3 mA; 13 s). Two oral and maxillofacial radiologists assessed the CBCT images for the presence of a defect and measured the depth of the bone defects. Diagnostic performance was compared in terms of the area under the curve (AUC), accuracy, sensitivity, specificity, and intraclass correlation coefficient. Results: High intraobserver and interobserver agreement was found (P<0.05). The OP300 showed slightly better diagnostic performance and higher detection rates than the CB-500 (AUC, 0.56±0.03), with a mean accuracy of 75.0%, sensitivity of 81.2%, and specificity of 62.5%. Higher contrast was observed with the CB-500, whereas the OP300 formed more artifacts. Conclusion: Within the limitations of this study, the present results suggest that the choice of CBCT systems with their respective commonly used acquisition protocols does not significantly affect diagnostic performance in detecting and measuring buccal peri-implant bone loss.

IOTA Simple Rules in Differentiating between Benign and Malignant Adnexal Masses by Non-expert Examiners

  • Tinnangwattana, Dangcheewan;Vichak-ururote, Linlada;Tontivuthikul, Paponrad;Charoenratana, Cholaros;Lerthiranwong, Thitikarn;Tongsong, Theera
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3835-3838
    • /
    • 2015
  • Objective: To evaluate the diagnostic performance of IOTA simple rules in predicting malignant adnexal tumors by non-expert examiners. Materials and Methods: Five obstetric/gynecologic residents, who had never performed gynecologic ultrasound examination by themselves before, were trained for IOTA simple rules by an experienced examiner. One trained resident performed ultrasound examinations including IOTA simple rules on 100 women, who were scheduled for surgery due to ovarian masses, within 24 hours of surgery. The gold standard diagnosis was based on pathological or operative findings. The five-trained residents performed IOTA simple rules on 30 patients for evaluation of inter-observer variability. Results: A total of 100 patients underwent ultrasound examination for the IOTA simple rules. Of them, IOTA simple rules could be applied in 94 (94%) masses including 71 (71.0%) benign masses and 29 (29.0%) malignant masses. The diagnostic performance of IOTA simple rules showed sensitivity of 89.3% (95%CI, 77.8%; 100.7%), specificity 83.3% (95%CI, 74.3%; 92.3%). Inter-observer variability was analyzed using Cohen's kappa coefficient. Kappa indices of the four pairs of raters are 0.713-0.884 (0.722, 0.827, 0.713, and 0.884). Conclusions: IOTA simple rules have high diagnostic performance in discriminating adnexal masses even when are applied by non-expert sonographers, though a training course may be required. Nevertheless, they should be further tested by a greater number of general practitioners before widely use.

Diagnostic Performance of Breast MRI in the Evaluation of Contralateral Breast in Patients with Diagnosed Breast Cancer

  • Saeed, Shaista Afzal;Masroor, Imrana;Beg, Madiha;Idrees, Romana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7607-7612
    • /
    • 2015
  • Aims: The purpose of our study was to evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in the evaluation of contralateral breast in patients with diagnosed breast cancer. A secondary objective was to determine accuracy of breast MRI in diagnosing multi-focal and multicentric lesions in the ipsilateral breast. Materials and Methods: Using a non-probability convenience sampling technique, patients with histopathologically diagnosed breast cancer with MRI of breast performed to exclude additional lesions were included. MRI findings were correlated with histopathology. In addition, follow-up imaging with mammography and ultrasound was also assessed for establishing stability of negative findings and for the detected of benign lesions. Results: Out of 157 MRI breast conducted during the period of 2008 to 2013, 49 were performed for patients with diagnosed breast cancer. The sample comprised of all females with mean age $50.7{\pm}11.0years$. The patient follow-up imaging was available for a period of 2-5 years. The sensitivity, specificity, and positive and negative predictive values of MRI in the detection of multifocal/multicenteric lesions was 85.7%, 88.8%, 60% and 96.6% respectively and for the detection of lesions in the contralateral breast were 100%, 97%, 83.3% and 100% respectively. Conclusions: Our study highlights the diagnostic performance and the added value of MRI in the detection of multifocal/multicenteric and contralateral malignant lesions. In patients with diagnosed breast cancer having dense breast parenchyma and with infiltrating lobular carcinoma as the index lesion MRI is particularly useful with excellent negative predictive value in the exclusion of additional malignant foci in the ipsilateral and contralateral breasts.