• Title/Summary/Keyword: Performance Analyses

Search Result 3,212, Processing Time 0.028 seconds

Quantitative Analyses of System Level Performance of Dynamic Memory Allocation In Embedded Systems (내장형 시스템 동적 메모리 할당 기법의 시스템 수준 성능에 관한 정량적 분석)

  • Park, Sang-Soo;Shin, Heon-Shik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.6
    • /
    • pp.477-487
    • /
    • 2005
  • As embedded system grows in size and complexity, the importance of the technique for dynamic memory allocation has increased. The objective of this paper is to measure the performance of dynamic memory allocation by varying both hardware and software design parameters for embedded systems. Unlike torrent performance evaluation studies that have presumed the single threaded system with single address spate without OS support, our study adopts realistic environment where the embedded system runs on Linux OS. This paper contains the experimental performance analyses of dynamic memory allocation method by investigating the effects of each software layer and some hardware design parameters. Our quantitative results tan be used to help system designers design high performance, low power embedded systems.

A Study on Seismic Performance Improvement of Nuclear Piping System through Dynamic Absorber (동흡진기를 사용한 원전 배관계 내진성능 상향에 대한 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, the dynamic absorber and the damper are applied to improve the seismic performance of the piping system, and their quantitative effects on the piping system performance are examined. For this purpose, the response performances of piping system applied with the dynamic absorber/damper are compared with those of the original piping system. Firstly, the frequency response analyses of the piping system with the presence or the absence of dynamic absorber/damper are performed and these results are compared. It has been shown that the maximum acceleration response per the frequency of the piping system is considerably reduced by installing the dynamic absorber and the damper. Secondly, the seismic responses of the piping systems with and without dynamic absorber/damper are compared. As a result of the numerical analyses, it is confirmed that key responses are reduced by 17%-63% due to the installation of the dynamic absorber and damper. Finally, as a result of the seismic performance evaluation, it is confirmed that the HCLPF (High Confidence of Low Probability of Failure) seismic performances are increased by 1.22 to 2.70 times with respect to the failure modes with an aid of the dynamic absorber and damper.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

Evaluation of Seakeeping Performance for an Amphibious Vehicle in Regular Head Waves Using Scaled Model (축소 모형을 활용한 선수 규칙파 중 수륙양용장갑차의 내항 성능 평가)

  • Youngmin Heo;Myungjun Jeon;Hyeon Kyu Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.77-87
    • /
    • 2024
  • In the present study, seakeeping performance for an amphibious vehicle in regular head waves was analyzed and evaluated experimentally and numerically. First, seakeeping tests were performed to confirm the vehicle's motion response of heave, pitch motion and vertical acceleration in restricted wavelength ratio conditions for a simplified vehicle shape. Numerical analyses were also conducted for a simplified vehicle shape to validate the numerical solver. To simulate the vehicle's motions, multi-degrees of freedom were calculated by a dynamic fluid-body interaction solver in STAR-CCM+. Comparison between numerical and experimental results was carried out for a simplified vehicle shape. Numerical results are in good agreement with experimental results. Second, numerical analyses were performed for a detailed vehicle shape considering seaway wavelength conditions. The seakeeping performance for an amphibious vehicle was evaluated by comparing with the existing ship's seakeeping performance standards.

SNR Analyses for MSC and Camera Electronics Design for Its Improvement

  • Kim Young Sun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.444-447
    • /
    • 2004
  • SNR(Signal to Noise Ratio) is one of the most important performance for the electro-optical camera system. This paper shows not only the SNR analyses for the MSC system, which is the payload in the KOMPSAT2 satellite, but also the trials for its improvement in the electronics circuit design. The MSC deals with one panchromatic band and four multi-spectral bands. The SNR analyses are performed based on the MSC design for the each band and assuming that the defined radiance reached directly to the sensor entrance pupil. In the SNR calculation, shot noise, dark current noise, analog electronics noise and ADC quantization noise are considered as noise sources. In these noise sources, especially, the electronics noise depends on the camera electronics design. This paper shows the camera electronics design to increase SNR and its test results as well as the SNR analyses.

  • PDF

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

A Numerical Analysis of Soil-Pile Systems for Pile Load Tests at a Korean Site (국내 말뚝재하시험에 대한 지반-말뚝계의 수치해석)

  • Oh, Se-Boong;Ahn, Tae-Kyong;Choi, Yong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.94-104
    • /
    • 1999
  • In order to evaluate the performance of axially of laterally loaded piles experimentaly, pile load tests can be carried out at the site Otherwise stress analyses or subgrade reaction analyses can solve the problem. In this study, stress analysis using FLAC code and subgrade reaction analyses using load transfer curves recommended by API(1993) were performed consistently on the basis of a result of site investigations, and the result of analyses was compared with the measured. As a result the behavior of pile heads was analyzed accurately for both axially and laterally loaded tests. Furthermore axially transferred loads were calculated appropriately for the measured and axial loads were transferred mainly mainly by the frictional resistance rather than by the tip resistance. Consequently, it can be commented that both analysis methods of soil-pile systems are applicable at teh objective site and that solutions may be more accurate if material properties from the site investigation are more explicit.

  • PDF

Performance Evaluation of Propeller for High Altitude by using Experiment and Computational Analysis (시험과 전산해석을 이용한 고고도용 프로펠러 성능 분석)

  • Park, Donghun;Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1035-1047
    • /
    • 2015
  • Wind tunnel experiment and computational analysis have been carried out to evaluate the performance of propeller for scale electric-powered HALE UAV, named EAV-2H+. Performance curves are measured for three propellers and their adequacy for EAV-2H+ installation is examined through consideration of operating conditions. Decline in performance coefficients is observed in low rpm region. Also, the effect of transition tape on propeller performance is measured and analyzed. The computational performance analyses are carried out by using commercial CFD program. The thrust and power coefficient from computations show good agreement with experimental results. Performance coefficients are compared and the influence of measurement device which contributes to discrepancy of the results is examined. Transition SST model is confirmed to yield the tendency of performance decline in low rpm range, similar to experimental observation. The decrease in aerodynamic performance of blade element due to low Reynolds number is identified to cause the decline in propeller performance. Analyses for high altitude conditions confirms degradation in propeller performance.