• Title/Summary/Keyword: Perforated muffler

Search Result 33, Processing Time 0.025 seconds

A Study on Muffler′s Transmission Loss and Backpressure Property (소음기의 투과손실 및 배압특성에 관한 연구)

  • 정경훈;황원걸;이유엽;김기세
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.676-681
    • /
    • 2001
  • We usually divide the noise of exhaust system into pulsation noise and flow noise. Pulsation noise is the shock wave to occur when the burning gas of low pressure emits and include harmonic having basic frequency as the exhaust cycle of engine. Flow noise is the noise that is produced when gas flow emits into the atmosphere through the pipe and has the character of frequency like pink noise which has the high level of high frequency component. A muffler is divided into reflective type and absorptive type. We usually use the muffler compounding the property of them. In this study, it is the case of transfer matrix method that a muffler is compounded to analyze the elements of each section according to sound wave's proceed direction. But we use simple model. So, we use finite element method that takes short time to analyze. Acoustic analysis gives us transfer matrix to use FEA of SYSNOISE and we use STAR-CD for fluid analysis. We made database that is based on analytical results about the muffler of expansion type, extended type, offset type, reverse type, and perforated type and developed the muffler design system to perform work efficiently.

  • PDF

A study on the inner flow fields characteristics of the semi-active muffler (반능동형 머플러 내부의 유동장특성에 관한 연구)

  • Park K.S.;Heo H.S.;Park S.J.;Kim D.H.;Han C.P.;Son S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1472-1477
    • /
    • 2005
  • Recently, the performance development of the exhaust system of a car is very important. The most important part of parts that constructing the exhaust system of a car is a muffler. The muffler reducing the exhaust noise from the engine influence on the engine performance directly. The inner parts of the muffler construct with the baffle and perforated pipes and so on. In the recent study, the study to design the semi-active muffler sensing the exhaust gas pressure controlling the back pressure variably with a EVV progress activity. So that the inner parts of the muffler show the complicated turbulent flow phenomena because of pulsatile flow from the engine and the structural properties and so on. The qualitative and quantitative analysis about the turbulent flow phenomena of the inner parts of the muffler is required gradually. In this study, to analysis the flow field of the inner parts of the muffler, analysis results with the PIV measurement to be able to analysis the variable change of the time and the space. Therefore, try to show the design variables to need to design the inner parts of a muffler of a car.

  • PDF

Performance Analysis of Axisymmetric Mufflers by BEM (경계요소법을 이용한 축대칭 소음기의 성능해석)

  • 권영필;임정빈;정갑철
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.337-344
    • /
    • 1995
  • A BEM program is developed for the performance analysis of axisymmetric mufflers. In the program the sub-region method is used to deal with singularity or inner boundary. The program is applied to typical axisymmjetric mufflers such as simple expansion, extended tube, perforated tube and absorptive expansion sufflers. The transmission losses of the mufflers are calculated by the program and compared with experiments. It is found that the prediction is in a good agreement with measurement, except for the absorptive muffler with parallel lining.

  • PDF

Numerical Analysis of Noise Reduction and Back-pressure for a Simple Expansion Chamber with a Partition (내부 파티션을 갖는 단순확장관의 소음저감 및 배압특성의 전산해석)

  • Kim, Yeon Woo;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.883-889
    • /
    • 2014
  • Mufflers have been widely used in the exhaust system to reduce the noise. However, installing muffler may deteriorate the efficiency due to the increase of back pressure. Mufflers usually consist of partition plates and perforated holes in a expansion chamber. In this paper, the influences of the location of the partition and hole on the acoustic TL and back pressure were examined. The acoustic TL was predicted using virtual lab commercial software, while the back pressure were predicted using CFX commercial software. The results were used to set up a database for finding their trends. The optimal muffler model in user-interested frequency range could be selected by analyzing this database.

Prediction of Vortex Reducing Effect by a Peforated Baffle in the Inlet Plenum of a Research Reactor (연구용 원자로 유입 공동에서 다공형 차폐물에 의한 와류 감쇄효과 예측)

  • Park J. H.;Chae H. T.;Park C.;Kim H. I.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2004
  • CFD analysis was performed to figure out flow behavior in the inlet plenum of new research reactor where coolant is injected to the flow tubes with the fuel assembly. The computation results showed that large-scale vortices are generated in the inlet plenum by flow stream injected from inlet pipe. These vortices are divided into small vortices and reversed their revolution. They may lead to flow-induced vibration of fuel assembly, moreover, which has been regarded as a cause of fretting wear of fuel assembly. Also there is an another important thing that average velocity of each flow-tube is uneven showing difference in maximum 18%. So it has been suggested that perforated baffle will be installed to prevent the formation of vortex in the inlet plenum. Two perforated baffles, one is flow skirt and the other is muffler type flow straightener, were proposed and their effect was evaluated using commercial CFD code, Fluent. According to CFD analysis for two perforated baffles, it was confirmed that both of them can prevent or reduce vortex formation in the inlet plenum and make average velocity of each flow tube more even.

An Experimental Study on the Transmission Loss of Perforated Tube Mufflers (다공관 소음기의 투과손실에 관한 실험적 연구)

  • 김찬묵;사종성;방극호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.346-352
    • /
    • 2002
  • This paper is the experimental study to estimate the influence of various design parameters on the performance of mufflers with perforated tubes and through-flow partitions. Muffler types considered in the present work include through-flow chamber, through-flow chamber with partition, and cross-flow chamber. The influences of the design parameters on the performance of the mufflers can be outlined as follows. In the case of the through-f]ow type mufflers, increasing the tube thickness and the hole diameter of the perforated tubes does not change the maximum value of the transmission loss but decrease the cutoff frequency. In the case of the through-flow with partitions type mufflers, it is shown that combining a fe w short chambers and long chambers can modify the frequency locations of the resonance frequencies to optimize the performance of the mufflers. For the case of the cross-flow type mufflers, it is shown that the transmission loss of the mufflers is mainly affected by the lower porosity when the porosities are different in both sides of the plug. Overall, it is shown that performance of the through-flow type with partition type mufflers is excellent in the lower frequency region, where the cross-flow type mufflers have better performance in the higher frequency region.

  • PDF

Acoustic performance of industrial mufflers with CAE modeling and simulation

  • Jeon, Soohong;Kim, Daehwan;Hong, Chinsuk;Jeong, Weuibong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.935-946
    • /
    • 2014
  • This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.