• 제목/요약/키워드: Perforated Element

검색결과 99건 처리시간 0.026초

개구부를 갖는 전단벽의 안정해석 (Stability Analysis of Concrete Shear Wall System with Opening)

  • 이수곤;김순철;송창영;송상용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.109-118
    • /
    • 2005
  • 철근콘크리트조 고층아파트의 경우 흔히 전단벽식 구조시스템을 채택하게 된다. 이때에는 작업자의 이동과 재료나 장비의 수평 운반 편의상 세대간의 내력벽에 직 4각형 형태의 개구부를 설치할 때가 많다. 이와 같은 개구부는 화재등의 재난시에 신속한 대피용 통로로 이용하도록 하는 경우도 있다. 전단벽의 개구부는 구조체의 안전이나 안정을 위협하는 중요한 요소로 될 수 있으므로 설계시나 안전검토에서 반드시 검토해야할 사항이다. 이번 연구는 개구부를 갖는 직 4각형 전단벽의 탄성안정에 관한 것이다. 연구에서는 유한 요소법을 이용하였고 수치해석의 중요 변수는 개구부의 위치와 크기이다. 또한 연직 하중에 의한 균등 압축응력은 물론 휨 모멘트에 의한 응력 및 수평 전단력이 판의 임계응력에 미치는 영향도 검토하였다. 끝으로 비재하면의 구속이 전단벽의 안정성에 미치는 영향도 검토하였다.

인도네시아 전통주택의 의장 특성에 관한연구 - 자바주택을 중심으로 - (The Characteristic of Decoration in Indonesian Traditional House - Focused Javanese Hous -)

  • 김도연;주서령;오혜경
    • 한국주거학회논문집
    • /
    • 제25권6호
    • /
    • pp.111-121
    • /
    • 2014
  • The purpose of the study is to understand the unique characteristics of decoration style in traditional Javanese houses. Reviewing literature and visiting site were applied as the research method. Javanese House can be divided into three parts; roof, wall and floor. First, the roof of the traditional Javanese House is the most unique and important decorative element. The roofs are covered with roof-tiles and have clay carving ornaments on top. Usually there are no ceilings, just exposed to the oblique shape roof, which are made of wood to enable air ventilation. Joglo roof is the outstanding and representative roof type of Javanese houses. There is artistic and constructive roof structure named as tumpang sari in Joglo roof. The decoration on tumpang sari is the most colorful and symbolic ornaments. Secondly, the most unique element in the wall is the gebyok. Gebyok is made of wood and full of carved ornament, which has an artistic appearance, and also important function. The top part of doors are designed as perforated woodcarving, which give both aesthetic and ventilation purposes. Last, the stratified floor is begin with ground yard, then veranda that made from hardened clay, and main room constituted with a wood scaffold to provide air circulation and remove the humidity of the ground. The decorations of the column stand (umpak) are unique, where usually lotus flower is carved into black stone or lime stone. The outside of the buildings in Java Houses is not decorated by colors or symbols, whereas colors are only used in temples, pavilion or in royal housings. Instead they have carvings and decorations on important structural elements such as columns and beams inside. The ornaments and colors of decorations symbolize their god, ancestors and piece.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.

Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings

  • Shariati, Mahdi;Faegh, Shervin Safaei;Mehrabi, Peyman;Bahavarnia, Seyedmasoud;Zandi, Yousef;Masoom, Davood Rezaee;Toghroli, Ali;Trung, Nguyen-Thoi;Salih, Musab NA
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.569-581
    • /
    • 2019
  • Corrugated steel plate shear wall (CSPSW) as an innovative lateral load resisting system provides various advantages in comparison with the flat steel plate shear wall, including remarkable in-plane and out-of-plane stiffnesses and stability, greater elastic shear buckling stress, increasing the amount of cumulative dissipated energy and maintaining efficiency even in large story drifts. Employment of low yield point (LYP) steel web plate in steel shear walls can dramatically improve their structural performance and prevent early stage instability of the panels. This paper presents a comprehensive structural performance assessment of corrugated low yield point steel plate shear walls having circular openings located in different positions. Accordingly, following experimental verification of CSPSW finite element models, several trapezoidally horizontal CSPSW (H-CSPSW) models having LYP steel web plates as well as circular openings (for ducts) perforated in various locations have been developed to explore their hysteresis behavior, cumulative dissipated energy, lateral stiffness, and ultimate strength under cyclic loading. Obtained results reveal that the rehabilitation of damaged steel shear walls using corrugated LYP steel web plate can enhance their structural performance. Furthermore, choosing a suitable location for the circular opening regarding the design purpose paves the way for the achievement of the shear wall's optimal performance.

선미 스케그 외판의 좌굴강도에 관한 연구 (A Study on the Buckling Strength of Stern Skeg Shell Plate)

  • 최경신;설상석;김진우;공석환;정원지
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren;Wenjing Guo;Xuechun Liu;Bin Wang;Piyong Yu;Xiaowen Ji
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.461-472
    • /
    • 2023
  • This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

관통구를 갖는 판구조물의 강도평가 방법에 관한 연구 (A Study on the Strength Evaluation Method of Plate Structures with Penetration-holes)

  • 김을년;장준태
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.476-484
    • /
    • 2017
  • The purpose of this paper is to verify the structural integrity of a region with numerous penetration-holes in offshore structures such as semi-submersible rig and FPSO. In order to effectively check the yielding and buckling strength of plate members with penetration-holes, a screening analysis program was developed with the FE analysis tool to generate fine meshed model using the theoretical and analysis methods. When a hole is appeared in the plate structure members, the flow of stress is altered such that concentrations of stress form near the hole. Stress concentrations are of concern during both preliminary and detail design and need to be addressed from the perspectives of strength. To configure the geometrical shape, very fine meshed FE analysis is needed as the most accurate method. However, this method is practically impossible to apply for the strength verifications for all perforated plates. In this paper, screening analysis method was introduced to reduce analysis tasks prior to detailed FE analysis. This method is applied to not only the peak stress calculation combined stress concentration factor with nominal stress but also nominal equivalent stress calculation considering cutout effects. The areas investigated by very fine meshed analysis were to be chosen through screening analysis without any reinforcements for penetration-holes. If screening analysis results did not satisfy the acceptance criteria, direct FE analysis method as the 2nd step approach were applied with one of the coarse meshed model considering hole or with the very fine meshed model considering the hole shape and size. In order to effectively perform the local fine meshed analysis, automatic model generating program was developed based on the MSC/PATRAN which is pre-post FE analysis program. Buckling strength was also evaluated by Common Structure Rule (CSR) adopted by IACS as the stress obtained from very fine meshed FE analysis. Due to development of the screening analysis program and automatic FE modeling program, it was able to reduce the design periods and structural analysis costs.