• 제목/요약/키워드: Perceptron System

검색결과 253건 처리시간 0.025초

입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계 (A new Design of Granular-oriented Self-organizing Polynomial Neural Networks)

  • 오성권;박호성
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘 (Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1149-1154
    • /
    • 2017
  • 배경잡음 하에서 음성인식 시스템의 우수한 인식성능을 얻기 위해서 적절한 음성의 특징 파라미터를 선택하는 것이 매우 중요하다. 본 논문에서 사용한 특징 파라미터는 위너필터 방법이 적용된 인간의 청각 특성을 이용한 멜 주파수 켑스트럼 계수(Mel frequency cepstral coefficient, MFCC)를 사용한다. 즉, 본 논문에서 제안하는 특징 파라미터는 배경잡음을 제거한 후에 깨끗한 음성신호의 파라미터를 추출하는 새로운 방법이다. 제안한 수정된 MFCC 특징 파라미터를 다층 퍼셉트론 네트워크에 입력하여 학습시킴으로써 화자인식을 구현한다. 본 실험에서는 14차의 MFCC 특징 파라미터를 사용하여 화자독립 인식실험을 실시하였으며, 백색잡음이 혼합된 경우의 음성의 화자독립인식률은 평균 94.48%로 효과적인 결과를 구할 수 있었다. 본 논문에서 제안한 방법과 기존의 방법들을 비교하였을 때 본 논문에서 제안한 화자인식 성능이 수정된 MFCC 특징 파라미터를 사용함으로써 향상되었다.

Evaluation of Environmental Factors to Determine the Distribution of Functional Feeding Groups of Benthic Macroinvertebrates Using an Artificial Neural Network

  • Park, Young-Seuk;Lek, Sovan;Chon, Tae-Soo;Verdonschot, Piet F.M.
    • Journal of Ecology and Environment
    • /
    • 제31권3호
    • /
    • pp.233-241
    • /
    • 2008
  • Functional feeding groups (FFGs) of benthic macroinvertebrates are guilds of invertebrate taxa that obtain food in similar ways, regardless of their taxonomic affinities. They can represent a heterogeneous assemblage of benthic fauna and may indicate disturbances of their habitats. The proportion of different groups can change in response to disturbances that affect the food base of the system, thereby offering a means of assessing disruption of ecosystem functioning. In this study, we used benthic macroinvertebrate communities collected at 650 sites of 23 different water types in the province of Overijssel, The Netherlands. Physical and chemical environmental factors were measured at each sampling site. Each taxon was assigned to its corresponding FFG based on its food resources. A multilayer perceptron (MLP) using a backpropagation algorithm, a supervised artificial neural network, was applied to evaluate the influence of environmental variables to the FFGs of benthic macroinvertebrates through a sensitivity analysis. In the evaluation of input variables, the sensitivity analysis with partial derivatives demonstrates the relative importance of influential environmental variables on the FFG, showing that different variables influence the FFG in various ways. Collector-filterers and shredders were mainly influenced by $Ca^{2+}$ and width of the streams, and scrapers were influenced mostly with $Ca^{2+}$ and depth, and predators were by depth and pH. $Ca^{2+}$ and depth displayed relatively high influence on all four FFGs, while some variables such as pH, %gravel, %silt, and %bank affected specific groups. This approach can help to characterize community structure and to ecologically assess target ecosystems.

기계학습 기반 다중 레이블 분류를 이용한 실시간 전략 게임에서의 상대 행동 예측 (Opponent Move Prediction of a Real-time Strategy Game Using a Multi-label Classification Based on Machine Learning)

  • 신승수;조동희;김용혁
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.45-51
    • /
    • 2020
  • 최근 많은 게임이 사용자의 게임 플레이와 관련된 데이터를 제공하고 있고, 이에 기계학습 기법을 결합하여 상대의 행동을 예측하는 연구들이 있다. 본 연구는 실시간 전략 게임(클래시로얄)의 경기 데이터와 기계학습 기반의 다중 레이블 분류를 사용하여 상대 플레이어의 행동을 예측한다. 초기 실험은 이진 형태의 카드 특성과 카드 배치 좌표 그리고 정규화된 시간 정보를 입력받아 카드 타입, 카드 배치 좌표를 랜덤포레스트와 다층 퍼셉트론을 이용하여 예측한다. 이후, 순차적으로 3 가지 전처리 방식을 사용하여 실험을 진행했다. 먼저 입력 데이터의 특성 정보 일부를 변환시켜 예측했다. 다음으로 입력 데이터를 연속된 카드 입력 방식까지 고려한 중첩 형태로 변환 시켜 예측했다. 마지막으로 모든 이전 단계의 데이터들을 정규화된 시간 기준에 따라 초반, 후반으로 분할하여 예측했다. 그 결과 가장 개선을 보인 전처리 방식은 중첩 형태의 데이터를 초반으로 분할하였을 경우로 카드 타입이 약 2.6%, 카드 배치 좌표가 약 1.8% 개선을 보였다.

Convolutional Neural Networks기반 항공영상 영역분할 및 분류 (Aerial Scene Labeling Based on Convolutional Neural Networks)

  • 나종필;황승준;박승제;백중환
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.484-491
    • /
    • 2015
  • 항공영상은 디지털 광학 영상 기술의 성장과 무인기(UAV)의 발달로 인하여 영상의 도입 및 공급이 크게 증가하였고, 이러한 항공영상 데이터를 기반으로 지상의 속성 추출, 분류, 변화탐지, 영상 융합, 지도 제작 형태로 활용되고 있다. 특히, 영상분석 및 활용에 있어 딥 러닝 알고리즘은 패턴인식 분야의 한계를 극복하는 새로운 패러다임을 보여주고 있다. 본 논문은 딥 러닝 알고리즘인 ConvNet기반으로 항공영상의 영역분할 및 분류 결과를 통한 더욱더 넓은 범위와 다양한 분야에 적용할 수 있는 가능성을 제시한다. 학습데이터는 도로, 건물, 평지, 숲 총 3000개 4-클래스로 구축하였고 클래스 별로 일정한 패턴을 가지고 있어 특징 벡터맵을 통한 결과가 서로 다르게 나옴을 확인할 수 있다. 본 연구의 알고리즘은 크게 두 가지로 구성 되어 있는데 특징추출은 ConvNet기반으로 2개의 층을 쌓았고, 분류 및 학습과정으로 다층 퍼셉트론과 로지스틱회귀 알고리즘을 활용하여 특징들을 분류 및 학습시켰다.

자료 전송 데이터 분석을 통한 이상 행위 탐지 모델의 관한 연구 (A Study on the Abnormal Behavior Detection Model through Data Transfer Data Analysis)

  • 손인재;김휘강
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.647-656
    • /
    • 2020
  • 최근 국가·공공기관 등 중요자료(개인정보, 기술 등)가 외부로 유출되는 사례가 증가하고 있으며, 조사에 따르면 정보유출 사고의 주체로 가장 많은 부분을 차지하고 있는 것이 대부분 권한이 있는 내부자로써 조직의 주요 자산에 비교적 손쉽게 접근할 수 있다는 내부자의 특성으로 외부에서의 공격에 의한 기술유출에 비해 보다 더 큰 피해를 일으킬 수 있다. 이번 연구에서는 업무망과 인터넷망의 분리된 서로 다른 영역(보안영역과 비(非)-보안영역 등)간의 자료를 안전하게 전송해주는 망간 자료전송시스템 전송 로그, 이메일 전송 로그, 인사정보 등 실제 데이터를 이용하여 기계학습 기법 중 지도 학습 알고리즘을 통한 이상 행위 탐지를 위한 최적화된 속성 모델을 제시하고자 한다.

PCA 표상을 이용한 강인한 얼굴 표정 인식 (Robust Facial Expression Recognition using PCA Representation)

  • 신영숙
    • 인지과학
    • /
    • 제16권4호
    • /
    • pp.323-331
    • /
    • 2005
  • 본 논문은 조명 변화에 강인하며 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리 작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며 단위분산 값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 한다. 본 실험 결과는 또한 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들을 내적상태의 차원모델에 기반한 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정 인식을 가능하게 하였다.

  • PDF

하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식 (Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks)

  • 유신;정병준;강현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1016-1023
    • /
    • 2009
  • 자동차 번호판 인식 시스템은 문자 추출, 특징 추출 등의 영상처리와 추출된 문자를 인식하는 인식기로 구성된다. 특징 추출은 문자 영역의 데이터 감소뿐만 아니라 인식 성능을 결정한다. 따라서 본 논문에서는 번호판 인식의 결과에 영향이 큰 숫자 인식, 특히 숫자의 특징 추출에 초점을 두었으며, 데이터의 군집성을 재배치하여 데이터 간의 최적의 산란도를 확보할 수 있는 통계적 특징의 혼합 모델을 제안하고, 이를 다층 퍼셉트론과 LVQ 신경망을 이용하여 유효성을 검증하였다. 제안된 통계적 특징 추출 방법은 번호판 영상이 갖는 정보를 가장 잘 유지하고, 잡음과 외부 환경에 강건하며 효과적인 방법임을 보여준다.

기계 학습을 활용한 이미지 결함 검출 모델 개발 (Development of Image Defect Detection Model Using Machine Learning)

  • 이남영;조혁현;정희택
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.513-520
    • /
    • 2020
  • 최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.

서프 및 하프변환 기반 운전자 동공 검출기법 (Face and Iris Detection Algorithm based on SURF and circular Hough Transform)

  • 아텀 렌스키;이종수
    • 대한전자공학회논문지SP
    • /
    • 제47권5호
    • /
    • pp.175-182
    • /
    • 2010
  • 본 논문에서는 얼굴과 동공을 검색하는 새로운 기법을 제시하며, 안전운행을 위한 운전자의 동공 감시에 적용한 실험결과를 포함하고 있다. 제시된 기법은 세 단계 주요 과정을 거치는데, 먼저 스킨칼라 세그먼테이션 기법으로 얼굴을 찾는 과정으로 이는 지금까지 사용된 휴리스틱모델이 아닌 학습과정 모델에 기반을 두고 있다. 다음에 얼굴 특징 세그먼테이션으로 눈, 입, 눈썹 등의 부분을 검출 하는데, 이를 위해 얼굴 각 부분에서 추출한 고유 특징들에 대한 PDF 추정을 사용하고 있다. 마지막으로 서큘러 하프 변환기법으로 눈 안의 동공을 찾아낸다. 제시된 기법을 조명이 다른 웹 얼굴 영상과 운전자의 CCD 얼굴 영상에 적용하여 동공을 찾아내는 실험을 하여, 높은 동공 검출율을 확인하였다.