• 제목/요약/키워드: Perceptron Neural Network

검색결과 434건 처리시간 0.033초

Defection Detection Analysis Based on Time-Dependent Data

  • Song, Hee-Seok;Kim, Jae-Kyeong;Chae, Kyung-Hee
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.445-453
    • /
    • 2002
  • Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.

  • PDF

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.

신경회로망과 확률모델을 이용한 근전도신호의 패턴분류에 관한 연구 (A Study on the Pattern Classificatiion of the EMG Signals Using Neural Network and Probabilistic Model)

  • 장영건;권장우;장원환;장원석;홍성홍
    • 전자공학회논문지B
    • /
    • 제28B권10호
    • /
    • pp.831-841
    • /
    • 1991
  • A combined model of probabilistic and MLP(multi layer perceptron) model is proposed for the pattern classification of EMG( electromyogram) signals. The MLP model has a problem of not guaranteeing the global minima of error and different quality of approximations to Bayesian probabilities. The probabilistic model is, however, closely related to the estimation error of model parameters and the fidelity of assumptions. A proper combination of these will reduce the effects of the problems and be robust to input variations. Proposed model is able to get the MAP(maximum a posteriori probability) in the probabilistic model by estimating a priori probability distribution using the MLP model adaptively. This method minimize the error probability of the probabilistic model as long as the realization of the MLP model is optimal, and this is a good combination of the probabilistic model and the MLP model for the usage of MLP model reliability. Simulation results show the benefit of the proposed model compared to use the Mlp and the probabilistic model seperately and the average calculation time fro classification is about 50ms in the case of combined motion using an IBM PC 25 MHz 386model.

  • PDF

적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구 (A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture)

  • 오성권;김동원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

전력 거래량 예측에서의 머신 러닝 성능 비교 (Performance Comparison of Machine Learning in the Prediction for Amount of Power Market)

  • 최정곤
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.943-950
    • /
    • 2019
  • 머신 러닝은 인력을 대체함으로써 업무 효율성을 크게 높일 수 있다. 특히 4차 산업혁명 시대의 요청에 따라 인공지능을 포함한 머신 러닝의 중요성은 점점 커지고 있다. 본 논문은 MLP, RNN, LSTM, ANFIS 신경망 알고리즘 이용하여, 월별 전력 거래량을 예측한다. 본 논문에서는 통계청에서 제공하는 월별 전력 거래량과 월별 전력 거래금액, 최종에너지 소비량, 자동차용 경유 가격에 대한 2001~2017년까지의 공공 데이터를 사용하였다. 본 논문은 제시하는 각각의 알고리즘들을 학습시키고, 알고리즘이 예측하는 시계열 그래프를 이용하여 예측 결과를 보여주고 RMSE를 이용하여 이들 중에서 가장 우수한 알고리즘 제시한다.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

Human Normalization Approach based on Disease Comparative Prediction Model between Covid-19 and Influenza

  • Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.32-42
    • /
    • 2023
  • There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

Identifying, Measuring, and Ranking Social Determinants of Health for Health Promotion Interventions Targeting Informal Settlement Residents

  • Farhad Nosrati Nejad;Mohammad Reza Ghamari;Seyed Hossein Mohaqeqi Kamal;Seyed Saeed Tabatabaee
    • Journal of Preventive Medicine and Public Health
    • /
    • 제56권4호
    • /
    • pp.327-337
    • /
    • 2023
  • Objectives: Considering the importance of social determinants of health (SDHs) in promoting the health of residents of informal settlements and their diversity, abundance, and breadth, this study aimed to identify, measure, and rank SDHs for health promotion interventions targeting informal settlement residents in a metropolitan area in Iran. Methods: Using a hybrid method, this study was conducted in 3 phases from 2019 to 2020. SDHs were identified by reviewing studies and using the Delphi method. To examine the SDHs among informal settlement residents, a cross-sectional analysis was conducted using researcher-made questionnaires. Multilayer perceptron analysis using an artificial neural network was used to rank the SDHs by priority. Results: Of the 96 determinants identified in the first phase of the study, 43 were examined, and 15 were identified as high-priority SDHs for use in health-promotion interventions for informal settlement residents in the study area. They included individual health literacy, nutrition, occupational factors, housing-related factors, and access to public resources. Conclusions: Since identifying and addressing SDHs could improve health justice and mitigate the poor health status of settlement residents, ranking these determinants by priority using artificial intelligence will enable policymakers to improve the health of settlement residents through interventions targeting the most important SDHs.

트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측 (Transformer-Based MUM-T Situation Awareness: Agent Status Prediction)

  • 백재욱;전성우;김광용;이창은
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.