To enhance the production of flavonoids [baicalin, wogonin-7-Ο-glucuronic acid (GA)], which are secondary metabolites of Scutellaria baicalensis Georgi(G.) plant cells, a multilayer perceptron control system was applied to regulate the substrate feeding in a fed-batch cultivation. The optimal profile for the substrate feeding rate in a fed-batch culture of S. baicalensis G. was determined by simulating a kinetic model using a genetic algorithm. Process variable profiles were then prepared for the construction of a multilayer perceptron controller that included massive parallelism, trainability, and fault tolerance. An error back-propagation algorithm was applied to train the multiplayer perceptron. The experimental results showed that neurocontrol incorporated with a genetic algorithm improved the flavonoid production compared with a simple fuzzy logic control system. Furthermore, the specific production yield and flavonoid productivity also increased.
하드 디스크(Hard Disk) 결함의 표준 패턴 클래스는 6가지로 분류되며, 이는 하드 디스크 생산 공정의 불량 처리 과정에서 중요한 역할을 수행한다. 본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 구성된 입출력 데이터들은 오차 역전파(Error Back-Propagation) 알고리듬을 통하여 다층 퍼셉트론의 학습에 사용되었다. 테스트 결과 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.
The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.
This paper studies a model to diagnose efficiency reduction of inverter using Multilayer Perceptron(MLP). In this study, two inverter data which started operation at different day was used. A Multilayer Perceptron model was made to predict photovoltaic power data of the latest inverter. As a result of the model's performance test, the Mean Absolute Percentage Error(MAPE) was 4.1034. The verified model was applied to one-year-old and two-year-old data after old inverter starting operation. The predictive power of one-year-old inverter was larger than the observed power by 724.9243 on average. And two-year-old inverter's predictive value was larger than the observed power by 836.4616 on average. The prediction error of two-year-old inverter rose 111.5572 on a year. This error is 0.4% of the total capacity. It was proved that the error is meaningful difference by t-test. The error is predicted value minus actual value. Which means that PV system actually generated less than prediction. Therefore, increasing error is decreasing conversion efficiency of inverter. Finally, conversion efficiency of the inverter decreased by 0.4% over a year using this model.
협력적 추천에서는 일반적으로 사용자 모델과 항목 모델이 사용되어진다. 사용자 모델은 사용자들간의 선호도 상관관계를 학습하고, 추천하고자 하는 항목에 대한 다른 사용자들의 선호도를 기반으로 그 항목을 추천한다. 이와 유사한 방식으로 항목 모델은 항목들간의 선호도 상관관계를 학습하고, 다른 항목들간의 선호도를 기반으로 추천 받는 사용자에게 항목을 추천한다. 본 논문에서는 추천 성능의 향상을 위해서 사용자 모델과 항목 모델간의 다양한 통합 방법을 제안한다. 제안하는 통합 방법으로는 순차적, 병렬적 통합 방법, 퍼셉트론 또는 다층 퍼셉트론을 이용한 통합 방법, 퍼지 규칙을 이용한 통합 방법 그리고 BKS를 적용한 방법이다. 본 실험에서는 통합 모델을 위해서 다층 퍼셉트론을 이용하여 사용자와 항목 모델을 각각 학습한다. 다층 퍼셉트론은 최근접 이웃방법이나 연관 규칙을 이용한 방법과 같은 기존의 추천 방법보다 연관된 항목들간의 가중치를 학습할 수 있고, 기호 데이타와 수치 데이타를 쉽게 처리할 수 있는 장점이 있다. 본 논문에서는 통합된 모델이 어떠한 단일 모델보다도 우수하고, 실험을 통하여 다층 퍼셉트론을 이용한 통합 방법이 다른 통합 방법보다 효율적인 통합 방법임을 보여주고 있다.
본 논문에서는 시선 깊이 추정 기술을 이용한 OST-HMD의 자동화면 on/off 기능을 제안한다. 제안하는 방법은 MLP(Multi-layer Perceptron)을 이용하여 사용자의 시선 정보와 보는 물체의 거리를 학습 한 후, 시선 정보만 입력하여 거리를 추정한다. 학습 단계에서는 착용 할 수 있는 양안 추적기를 사용하여 시선 관련 특징을 얻는다. 그런 다음 이 특징을 다층 퍼셉트론 (MLP: Multi-layer Perceptron)에 입력하여 학습하고 모델을 생성한다. 추론 단계에서는 안구 추적기로부터 실시간으로 시선 관련 특징을 얻고 이를 MLP에 입력하여 추정 깊이 값을 얻는다. 마지막으로 HMD의 화면을 켜거나 끌 것인지 여부를 결정하기 위해 이 계산결과를 활용한다. 제안된 방법의 가능성을 평가하기 위해 프로토타입을 구현하고 실험을 수행하였다.
중첩된 환경의 이동 네트워크에서 이동 노드는 여러 개의 이동 라우터 중 하나를 선정하여 정보를 교환하게 된다. 이동 노드에게 기존의 상향식 또는 하향식 방법으로 지정된 이동 라우터는 최적의 이동 라우터가 아닐 수 있다. 이러한 경우, 이동 노드는 빈번한 핸드오버 및 바인딩 갱신을 발생시켜 이동 노드의 QoS(Quality of Service)를 저해 할 수 있다. 본 논문에서는 중첩된 환경의 이동 네트워크에서 이동 노드의 이동 특성과 이동 라우터의 QoS 정보를 기반으로 최적의 이동 라우터를 선정하는 방안을 제시한 후, MLP(Multi-layered Perceptron)를 이용하여 중첩 이동 네트워크의 이동 라우터 선정 방안을 학습시킨다. 학습된 MLP의 학습 결과와 실제 선정 결과를 분석하여 제안한 MLP 구조가 대규모의 중첩된 환경의 이동 네트워크에서 사용 가능함을 증명한다.
기존의 단층 퍼셉트론은 출력 노드가 선형 분리 가능한 패턴들만을 분류할 수 있고 XOR과 같은 비선형 문제에 대해서는 분류할 수 없는 단점이 있다. 퍼지 단층 퍼셉트론은 퍼지 소속 함수(Fuzzy Membership Function)를 적용하여 단층 구조로 XOR 문제와 같은 고전적인 문제를 개선하였다. 그러나 퍼지 단층 퍼셉트론은 기존의 단층 퍼셉트론과 마찬가지로 결정 경계선이 진동하는 경우가 생기며 초기 가중치의 범위와 학습률에 따라 수렴성이 매우 낮아지는 단점이 있다. 따라서 본 논문에서는 바이어스항을 도입하여 결정 경계선이 진동하는 것을 방지하여 수렴성을 개선시키고 선형 활성화 함수를 제안하고 학습률과 모멘텀 개념을 도입 한 개선된 델타규칙을 적용함으로써 학습 시간을 단축시키는 개선된 퍼지 단층 퍼셉트론 알고리즘을 제안한다. 제안된 방법과 퍼지 단층 퍼셉트론간의 학습 성능을 분석하기 위하여 인공 신경망에서 벤치마크로 사용되는 XOR 문제와 패턴 분류에 적용하여 Epoch 수와 수렴성을 비교한 결과, 제안된 방법이 기존의 퍼지 단층 퍼셉트론보다 학습 시간이 적게 소요되고 수렴성이 개선된 것을 확인하였다.
사면의 안전율과 임계활동면을 다층 퍼셉트론 신경망(multi-layer perceptron, MLP)을 이용하여 구할 수 있도록 훈련하였다. 사면의 형상은 한국의 설계기준을 참고한 단순 사면으로, 건조한 경우와 지하수위가 존재하는 경우를 모두 고려하였으며 사면을 구성하는 토질의 물성은 세립분을 포함한 사질토로 고려하였다. 훈련에 필요한 데이터를 만들 때 한계평형해석법을 이용하여 42,000가지 경우의 사면안정해석을 수행하였고, 지하수위가 고려된 도메인의 해석에서 불포화토의 모관흡수력으로 인한 유효응력 증가를 고려하였다. 지하수와 유효응력의 분포를 사면안정해석에 적용할 수 있도록 정상상태 침투 해석을 수행하였다. 사면을 표현하는 물성을 입력하면 안전율과 원호 파괴면을 예측할 수 있는 MLP 모델과 모델의 성능을 정량적으로 평가할 수 있는 방법을 제시하였다.
본 논문에서는 퍼셉트론형 신경회로망에 오차역전파 알고리즘을 사용하여 학습을 실시하여, N비트의 패리티판별에 필요한 최소의 중간유닛수의 해석에 관한 연구이다. 따라서 본 논문은 제안한 퍼셉트론형 신경회로망의 중간 유닛의 수를 변화시켜 N비트의 패리티 판별 실험을 실시하였다. 본 시스템은 패라티 판별의 실험을 통하여 N비트 패리티 판별이 가능하다는 것을 실험으로 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.