• Title/Summary/Keyword: Perceived crosstalk

Search Result 2, Processing Time 0.018 seconds

Analysis of the Different Influences of Additive or Subtractive Three-dimensional Crosstalk on the Level of the Visual Fatigue

  • Park, Minyoung;Kim, Joohwan;Choi, Hee-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • Three-dimensional (3D) crosstalk is one of the main causes of visual fatigue and needs to be suppressed. The 3D crosstalk can be categorized into two different kinds according to its appearance-additive 3D crosstalk and subtractive 3D crosstalk. In this paper, we analyze the influence of different kinds of 3D crosstalk to the perceived level of visual fatigue in order to suppress the perceived 3D crosstalk effectively.

The Effects of Stimulus-background Contrast, Background Texture Density and Screen Disparity of Stimulus on Crosstalk Perception (자극과 배경의 대비, 배경 텍스쳐 밀도, 자극의 화면 시차가 크로스톡 지각에 미치는 영향)

  • Park, JongJin;Li, Hyung-Chul O.;Kim, ShinWoo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.225-236
    • /
    • 2013
  • 3D contents could cause unique 3D visual fatigue. Screen disparity, image blurring, and crosstalk are known to be the three major factors responsible for the fatigue. Among these, screen disparity and image blurring are content factors, that is, one can directly manipulate contents themselves to handle visual fatigue caused by these two factors. On the other hand, because crosstalk is closely tied to physical characteristics of 3D display, it is difficult or even impossible to reduce crosstalk-driven visual fatigue unless one replaces 3D display itself (for example, from active to passive display). However, the effects of crosstalk on 3D visual fatigue depends on visual stimulus features (that is, contents), and thus it is possible to manipulate stimulus features in order to handle visual fatigue caused by crosstalk. Hence, this research tested the effects of visual stimulus features on crosstalk (which then causes 3D visual fatigue). Using relative depth discrimination task, we tested the effects of stimulus-background contrast, background texture density, and screen disparity on the degree of perceived crosstalk. The results showed that crosstalk decreases with presence of background texture and with less degree of screen disparity.