• Title/Summary/Keyword: Peptide mapping

Search Result 46, Processing Time 0.029 seconds

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Real Protein Prediction in an Off-Lattice BLN Model via Annealing Contour Monte Carlo

  • Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.627-634
    • /
    • 2009
  • Recently, the general contour Monte Carlo has been proposed by Liang (2004) as a space annealing version(ACMC) for optimization problems. The algorithm can be applied successfully to determine the ground configurations for the prediction of protein folding. In this approach, we use the distances between the consecutive $C_{\alpha}$ atoms along the peptide chain and the mapping sequences between the 20-letter amino acids and a coarse-grained three-letter code. The algorithm was tested on the real proteins. The comparison showed that the algorithm made a significant improvement over the simulated annealing(SA) and the Metropolis Monte Carlo method in determining the ground configurations.

Isolation and Partial Chemical Characterization of the Yolk Proteins from Drosophila sp. (robusta species group) (Drosophila sp.(robusta species group)의 난황 단백질의 분리 및 부분적 화학적 특성)

  • Kim, Se-Jae;Gi
    • The Korean Journal of Zoology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 1992
  • The three yolk polypeptides have been isolated and partially characterized. Their molecular weights of YPI, YP2, and YP3 were 48, 000, 47, 000, and 46, 000, respectivelv, as judged by SDS-polyacrvlamide gel electrophoresis. They have different digestion products upon in situ peptide mapping by limited proteolysis. Two-dimensional gel electrophoresis showed that their isoelectric points were heterogeneous from 5.92 to 6.54. And thew showed three different antigen-antibody reactions when each polvpeptides is reacted with antisera made to a mixture of all of three. These data reported here indicate that the yolk proteins are consisted of distinctive polypeptides in Drosophlla sp. (robusta species group).

  • PDF

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Induction of Anti-Aquaporin 5 Autoantibody Production by Immunization with a Peptide Derived from the Aquaporin of Prevotella melaninogenica Leads to Reduced Salivary Flow in Mice

  • Ahreum Lee;Duck Kyun Yoo;Yonghee Lee;Sumin Jeon;Suhan Jung;Jinsung Noh;Soyeon Ju;Siwon Hwang;Hong Hee Kim;Sunghoon Kwon;Junho Chung;Youngnim Choi
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.34.1-34.16
    • /
    • 2021
  • Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.

Nucleotide Sequence and Properties of Macrolide-Lincosamide-Streptogramin B Resistance Gene from Staphylococcus aureus DH1 (Staphylococcus aureus DH1에서 분리된 Macrolide-Lincosamide-Streptogramin B 계열 항생물질에 대한 저항성 인자의 특성과 염기서열)

  • 권동현;박승문;윤권상;변우현
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 1990
  • Two macrolide-lincosamide-streptogramin B (MLS) antibiotic resistance genes, one expressed inducibly and the other expressed constitutively were recognized from a single Staphylococcus aureus DH1 strain. The inducible MLS resistance gene was isolated and cloned from the R-plasmid pDE1(7.4kb) and the constitutive gene was from chromosomal DNA. Base sequence of the inducible MLS resistance gene (1.2kb) was determined and found as same that of pE194. The restriction map of the cloned constitutive MLS resistance gene was compared with that of the inducible gene. Two genes have same restriction map except leader region. In the constitutive gene there is no leader region which is doing major role in inducible expression.

  • PDF

Site-Directed Mutagenesis of Two Cysteines (155, 202) in Catechol 1,2-dioxygenase $I_1$ of Acinetobacter lwoffii K24

  • Kim, Seung-Il;Kim, Soo-Jung;Leem, Sun-Hee;Oh, Kye-Heon;Kim, Soo-Hyun;Park, Young-Mok
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.172-175
    • /
    • 2001
  • Catechol 1,2-dioxygenase $I_1$ ($CDI_1$) is the first enzyme of the $\beta$-ketoadipate pathway in Acinetobacter lowffii K24. $CDI_1$ has two cysteines (155, 202) and its enzyme activity is inhibited by the cysteine inhibitor, $AgNO_3$. Two mutants, $CDI_1$ C155V and $CDI_1$ C202V, were obtained by site-directed mutagenesis. The two mutants were overexpressed and the mutated amino acid residues (Cys$\rightarrow$Val) were characterized by peptide mapping and amino acid sequencing. Interestingly, $CDI_1$ C155V was inhibited by $AgNO_3$, whereas $CDI_1$ C202V was not inhibited. This suggests that $Cys^{202}$ is the sole inhibition site by $AgNO_3$ and is close to the active site of the enzyme. However, the results of the biochemical assay of mutated $CDI_1s$ suggest that the two cysteines are not directly involved in the activity of the catechol 1,2-dioxygenase of $CDI_1$.

  • PDF