• Title/Summary/Keyword: Peptide hydrolysis

Search Result 163, Processing Time 0.025 seconds

Exploration of nutritional and bioactive peptide properties in goat meat from various primal cuts during in vitro gastrointestinal digestion and absorption

  • Pichitpon Luasiri;Papungkorn Sangsawad;Jaksuma Pongsetkul;Pramote Paengkoum;Chatsirin Nakharuthai;Saranya Suwanangul;Sasikan Katemala;Narathip Sujinda;Jukkrapong Pinyo;Jarunan Chainam;Chompoonuch Khongla;Supaluk Sorapukdee
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1096-1109
    • /
    • 2024
  • Objective: This research aims to explore the nutritional and bioactive peptide properties of goat meat taken from various primal cuts, including the breast, shoulder, rib, loin, and leg, to produce these bioactive peptides during in vitro gastrointestinal (GI) digestion and absorption. Methods: The goat meat from various primal cuts was obtained from Boer goats with an average carcass weight of 30±2 kg. The meat was collected within 3 h after slaughter and was stored at -80℃ until analysis. A comprehensive assessment encompassed various aspects, including the chemical composition, cooking properties, in vitro GI digestion, bioactive characteristics, and the bioavailability of the resulting peptides. Results: The findings indicate that the loin muscles contain the highest protein and essential amino acid composition. When the meats were cooked at 70℃ for 30 min, they exhibited distinct protein compositions and quantities in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile, suggesting they served as different protein substrates during GI digestion. Subsequent in vitro simulated GI digestion revealed that the cooked shoulder and loin underwent the most significant hydrolysis during the intestinal phase, resulting in the strongest angiotensin-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition. Following in vitro GI peptide absorption using a Caco-2 cell monolayer, the GI peptide derived from the cooked loin demonstrated greater bioavailability and a higher degree of ACE and DPP-IV inhibition than the shoulder peptide. Conclusion: This study highlights the potential of goat meat, particularly cooked loin, as a functional meat source for protein, essential amino acids, and bioactive peptides during GI digestion and absorption. These peptides promise to play a role in preventing and treating metabolic diseases due to their dual inhibitory effects on ACE and DPP-IV.

Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis (고압처리와 단백질 분해효소를 이용한 연산오계 다리육 펩타이드 생산 최적화 및 특성 분석)

  • Ha, Yoo-jin;Kim, A-Yeon;Yoo, Sun-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.182-191
    • /
    • 2016
  • The purpose of this research was the optimization of protein hydrolysate production using a commercial enzyme bromelain 1200 derived from the leg of Yeonsan Ogae by response surface methodology. Yeonsan Ogae has long been known as supporting health and high efficacy treatment. In recent days, as the efficacy of functional peptides becomes more known, optimization of oligopeptide production and its characteristics from Ogae leg meat has been performed. Response surface methodology was performed for optimization of enzyme hydrolysis. The process was varied in pressure (30 to 100 MPa), time (1 to 3 h), and substrate concentration (10 to 30%). The degree of hydrolysis, amino acids, and molecular weight of products were analyzed. The optimum conditions were determined to be a pressure of 100 Mpa, time of 3 h, and substrate concentration of 20%. Under optimized conditions, degree of hydrolysis was 34.10%. The average molecular weight of protein hydrolysates was less than 1,000 Da. Major amino acids were leucine, lysine, alanine, glutamic acid, and phenylalanine.

Isolation and Characteristics of Angiotensin-I Converting Enzyme Inhibitory Activity of Peptic Hydrolyzates of Anchovy Muscle Protein (멸치육 단백질 효소가수분해물로부터 Angiotensin-I 전환효소 저해제의 분리 및 그 특성)

  • KIM Seon-Bong;LEE Tae-Gee;PARK Yeung-Beom;YEUM Dong-Min;KIM Oi-Kyung;DO Jeong-Ryong;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Hydrolyzates which inhibit the angiotensin-I converting enzyme(ACE) were prepared from defatted anchovy meal by pepsin. These were tested for inhibitory activity against ACE, which is one of the hypertension inducing factors. The ACE inhibitory activity of the hydrolyzates increased until 20hrs of hydrolysis had elapsed but slightly decreased after that time. And presence of $50\%$ ethanol soluble peptide-nitrogen increased slowly up to 12hrs of hydrolysis, and then mainly increased until 20hrs of hydrolysis was completed. From the profiles of gel permeation chromatography on a Bio-gel P-2 of $50\%$ ethanol soluble fraction obtained from hydrolyzate for 20hrs, the higher active fractions were 2'($IC_{50}=45\;{\mu}g\;protein/ml$) and 4'($IC_{50}=76\;{\mu}g\;protein/ml$). Amino acid analysis showed major quantities of glutamic acid, leucine, lysine for 2'and aspartic acid, threonine for 4' respectively.

  • PDF

Proteolysis of Defatted Rice Bran Using Commercial Proteases and Characterization of Its Hydrolysates (탈지미강 단백질의 가수분해 및 분해물의 특성 연구)

  • Kim, Chang-Won;Kim, Hyun-Seok;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • The defatted rice bran (DRB) was enzymatically hydrolyzed using eight commercial proteases for 4hr at optimum pH and temperature. Proteolytic hydrolysates were examined in supernatant and precipitate using lowry, semimicro kjeldahl and gravimetric method using weight difference before and after enzymatic hydrolysis. In lowry and kjeldahl protein assay method, two proteases (Alcalase and Protease N) were found to be the most effective enzymes. In gravimetric method, 60.6~118.3 mg protein/g DRB was hydrolyzed after eight commercial proteases treatments. Similar to lowry and kjeldahl method, 118.3 and 107.1 mg protein/g DRB were hydrolyzed after Alcalase and Protease N treatments, respectively. When two or three effective proteases (Protamex, Alcalase and Protease N) were applied at one time to obtain synergistic effect, significant increase (P<0.05) was observed when three proteases were applied at one time (63.4 mg protein/g DRB in lowry method and 204.5 mg protein/g DRB in gravimetric method). This result suggests that Alcalase and Protease N were the most effective enzymes for proteolysis of DRB and three commercial enzymes (Protamex, Alcalase and Protease N) showed the synergistic effect on the hydrolysis of DRB.

Optimization of enzymatic hydrolysis of viscera waste proteins of black body fowl(Yeonsan Ogae) to produce peptides using a commercial protease and it's characters analysis (단백질 분해효소를 이용한 연산오계 내장 펩타이드 생산 최적화 및 특성분석)

  • Choi, So-Young;Kim, A-Yeon;Song, Yu-Rim;Ji, Joong-Gu;Yoo, Sun-Kyun
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.253-262
    • /
    • 2016
  • Yeonsan Ogae has been known as supporting health and high efficacy of treatment. In recent days, as the efficacy of functional peptides has known, the optimization of oligo peptides production and its characteristics from Ogae viscera has been performed. Response surface method was used to perform the optimizaion of enzyme hydrolysis. The range of processes was temperature (40, 50 and $60^{\circ}C$), pH(6.0, 7.0 and 8.0), and enzyme(1, 2 and 3%). The degree of hydrolysis, amono acids, molecular weight of products were analyzed. The optimum process of enzyme hydrolysis were determined as temperature $58^{\circ}C$, pH 7.5, and enzyme concetration 3%. At optimum conditions, the degree of hydrolysis after 2 h reaction was 75-80%. The total amino acids of amino acid and were 386.15 mg/100 g and 155.26 mg/100 g, respectively. The molecular weight of products by using Maldi-TOF was ranged from 300 to 1,000 Da.

Preparation of chicken feather protein hydrolysates and isolation of iron-binding peptides (닭털 단백질로부터 가수분해물 제조 및 철분 결합 펩타이드의 분리)

  • Kim, Nam Ho;Choi, Dong Won;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.435-439
    • /
    • 2013
  • As byproducts of chicken slaughtering, chicken feathers are produced and mostly discarded without proper treatment, which results in serious environment pollution. Therefore, the appropriate treatment and utilization of chicken feathers are needed. In particular, chicken feathers can be used as protein sources for the preparation of protein hydrolysates, considering that chicken feathers have a large amount of proteins. In this study, chicken feather protein hydrolysates were prepared and their iron-binding peptides were isolated. Chicken feather protein was extracted from feathers of slaughtered chicken, and its hydrolysates were prepared via hydrolysis with Flavourzyme for 8 h. Then the chicken feather protein hydrolysates were ultra-filtered to obtain small peptide fractions and fractionated using Q-Sepharose and Sephadex G-15 columns to isolate their iron-binding peptides. Two major fractions were produced from each of the Q-Sepharose ion exchange chromatography and the Sephadex G-15 gel filtration chromatography. Among the fractions, the peptide fraction with a high iron-binding activity level, F12, was isolated. These results suggest that chicken feather protein hydrolysates can be used as iron supplements.

Physicochemical Properties of Isolated Peptides from Hwangtae (yellowish dried pollack) Protein Hydrolysate

  • Cho, San-Soon;Lee, Hyo-Ku;Han, Chi-Won;Seong, Eun-Soo;Yu, Chang-Yeon;Kim, Myong-Jo;Kim, Na-Young;Kang, Wie-Soo;Ko, Sang-Hoon;Son, Eun-Hwa;Choung, Myoung-Gun;Lim, Jung-Dae
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • Fish protein hydrolysates (FPHs) with different degrees of hydrolysis by treatment with alcalase, pronase, flavourzyme and trypsin and isolated peptide were prepared from Hwangtae (yellow dried pollack, Theragra chalcogramma). Hwangtae protein hydrolysate was fractionated according to the molecular weight into six major types of APO1 (1.3 kDa), APO2 (1 kDa), APO3 (<1 kDa), APACE (<1 kDa), APG1 (70 kDa) and APG2 (70 kDa) isolated from the hydrolysate using consecutive chromatographic methods. Soluble peptide were produced from Hwangtae and evaluated for their nutritional and functional properties. Some functional properties of FPHs were assessed and compared with those of egg albumin or the soybean protein. APO2 had the highest nitrogen solubility value (94.2%), emulsion capacity and emulsion stability of the Alaska Pollack peptide ranged from 12.4 to 39.5 (mL of oil per 200 mg of protein) and 44.0% to 77.5%, respectively. Highest and lowest fat adsorption values were observed for APG1 (9.9 mL of oil per gram of protein) and APO3 (3.8 mL of oil per gram of protein), respectively.

Debittering of Enzymatic Hydrolysate Using Exopeptidase Active Fractions from the Argentina Shortfin Squid Illex argentinus Hepatopancreas (원양산 오징어(Illex argentinus) 간췌장 유래 Exopeptidase 분획물의 쓴맛개선 효과)

  • Kim, Jin-Soo;Kim, Min Ji;Kim, Ki Hyun;Kang, Sang In;Park, Sung Hwan;Lee, Hyun Ji;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • Exopeptidase active fractions from the hepatopancreas of the Argentina shortfin squid Illex argentinus, were obtained with acetone (AC 30-40%), ammonium sulfate (AS 60-70% saturation), anion exchange chromatography (AE-II, 0.2 M NaCl) and gel filtration chromatography (GF-I, 30-50 kDa) fractionation methods. A bitter peptide solution that has a bitterness equivalent to that of 2% glycylphenylalanine and prepared by tryptic hydrolysis of milk casein, was treated with the exopeptidase active fractions. The GF-I fraction was the best based on aminopeptidase activity (35.3 U/mg), percentage of recovery (30.7%) and a sensory evaluation (1.7). The amount of released amino acids increased as incubation time increased, and the bitterness of the enzyme reaction mixtures decreased. Incubation with the GF-I fraction for 24 h resulted in the hydrolysis of several peptides as revealed by the reverse-phase high performance liguid chromatography profile, with three peaks (3, 5 and 6) decreasing in area (%) and three peaks (1, 2 and 4) increasing in area (%). Therefore, the GF-I fraction appeared to be ideally suited to reduce bitterness in protein hydrolysates by catalyzing the hydrolysis of bitter peptides.

Effects of Gelatin Hydrolysates Addition on Technological Properties and Lipid Oxidation of Cooked Sausage

  • Ham, Youn-Kyung;Song, Dong-Heon;Noh, Sin-Woo;Gu, Tae-Wan;Lee, Jae-Hyeok;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1033-1043
    • /
    • 2020
  • This study investigated the impacts of gelatin hydrolysate addition on the technological properties and lipid oxidation stability of cooked sausage. Gelatin hydrolysate was prepared from pork and duck skin gelatin, through stepwise hydrolysis using collagenase and pepsin. The cooked sausages were formulated without gelatin (control) or with 1% pork skin gelatin, 1% duck skin gelatin, 1% pork skin gelatin hydrolysate, and 1% duck skin gelatin hydrolysate. The pH, color characteristics, protein solubility, cooking loss, and textural properties of cooked sausages were evaluated, and the 2-thiobarbituric acid reactive substances (TBARS) value was measured weekly to determine lipid oxidation stability during 4 wk of refrigerated storage. Enzymatic hydrolysis of gelatin decreased protein content and CIE L* but increased redness and yellowness (p<0.05). When 1% gelatin or gelatin hydrolysate was incorporated in cooked sausage, however, little to no impacts on pH value, moisture content, protein content, color characteristics, protein solubility, and cooking loss were found (p>0.05). The addition of 1% duck skin gelatin hydrolysate increased the cohesiveness and chewiness of cooked sausages. The inclusion of 1% duck skin gelatin accelerated lipid oxidation of cooked sausages during refrigerated storage (p<0.05), whereas duck skin gelatin hydrolysate caused a lower TBARS value in cooked sausage compared to duck skin gelatin. The results show comparable effects of gelatin and gelatin hydrolysate addition on the technological properties of cooked sausages; however, the oxidative stability of raw materials for gelatin extraction should be evaluated clearly in further studies.

Characteristics of Enzymatic Hydrolysates of Rice Bran and Rice Protein by Mixing Ratio and Hydrolysis Times (미강과 쌀 단백질의 비율과 분해 시간에 따른 효소분해물의 품질 특성)

  • Seon, Yoo Kyung;Goo, Hoo Mo;Park, Kwang Kun;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1460-1466
    • /
    • 2016
  • This study was conducted to develop a savory ingredient using rice material. We made hydrolysates with ratios of rice bran and rice protein of 4:0, 3:1, 2:2, and 1:3 (w/w) using commercial enzymes, and then investigated their quality properties. At a ratio of 3:1, nitrogen degradation ratio (NDR), savory taste, and overall acceptability were the highest compared to other ratios. Rice bran and rice protein with a ratio of 3:1 were hydrolyzed for 13 days, and characteristics of the hydrolysate were investigated after 3, 5, 7, 10, and 13 days. Total nitrogen, amino nitrogen, and NDR of the hydrolysate after 10 days were higher than those of other hydrolysates. SDS-PAGE showed that the molecular weight of the hydrolysate peptide became smaller as hydrolysis time increased. Glutamic acid content was highest among all amino acids in the hydrolysate for 13 days. Amino acids related to bitter taste decreased from 5 to 13 days, whereas amino acids related to sweet taste substantially increased over time. Sensory evaluation showed that the hydrolysate after 10 days was best. These results suggest that rice bran and rice protein at a mixing ratio of 3:1 and hydrolysis for 10 days were optimal hydrolysis condition for development of natural savory ingredients.