• 제목/요약/키워드: Peptide antibiotics

검색결과 77건 처리시간 0.023초

Rapid and Efficient Isolation of Genes for Biosynthesis of Peptide Antibiotics from Gram-positive Bacterial Strains

  • Lee, Soon-Youl;Rhee, Sang-Ki;Kim, Chul-Ho;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권4호
    • /
    • pp.310-317
    • /
    • 1998
  • Peptide synthetases are large multifunctional enzyme complexes that catalyze the nonribosomal synthesis of a structurally diverse family of peptide antibiotics. These enzymes are composed of functionally independent domains with independent enzymatic activities. Their specific linkage order of domains forms the protein template that defines the sequence of the incorporated amino acids. Within each domain, several motifs of highly conserved sequences have been identified from the sequence alignment of the various peptide synthetases [30]. Taking advantage of the conserved nucleotide sequence of Core 1 and Core 2, we designed PCR primers to amplify the peptide synthetase genes from three different gram-positive bacterial strains. Nucleotide sequence analysis of the amplified PCR products from those three strains showed significant homology to various peptide synthetase genes, suggesting that the PCR products are parts of peptide synthetase genes. Therefore, this rapid and efficient PCR technique can be used for the isolation of peptide synthetase genes from various strains.

  • PDF

방선균 분리주 G-37이 생산하는 항생물질의 물리.화학적 특성과 항균활성 (Physico-chemical and Antagonistic Properties of Antibiotics Produced by Actinomycetes Isolate G-37)

  • 여운형;김영호;채순용;박은경
    • 한국연초학회지
    • /
    • 제17권2호
    • /
    • pp.103-108
    • /
    • 1995
  • Antibiotic and physico-chemical properties of an active compound from actinomycetes isolate G-37, of which the culture filtrate had an inhibitory effect against tobacco mosaic virus(W) infection, were examined. The active compound, which was purified by ethylacetate extraction, silica gel column chromatography, preparative thin layer chromatography, and high performance liquid chromatography, showed strong antibacterial activities especially against Gram-positive bacteria including Bacillus subtillis, Sarcina lutea and Staphylococcus aureus. From the IH-NMR, FAB/RfS, UV spectral data, and physicochemical properties, the active compound of G-37 appears to belong to a peptide antibiotic group. Among the known peptide antibiotics in the antibiotic group, No. 280, A-30912, and Taitomycin showed molecular weights and ultra violet spectrum similar to those of the active compound from G-37, but was not identical to the compound, which suggests that it may be a new peptide antibiotics.

  • PDF

Expression, Purification, and Characterization of C-Terminal Amidated Glucagon in Streptomyces lividans

  • Qi, Xiaoqiang;Jiang, Rong;Yao, Cheng;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1076-1080
    • /
    • 2008
  • Glucagon, a peptide hormone produced by alpha-cells of Langerhans islets, is a physiological antagonist of insulin and stimulator of its secretion. In order to improve its bioactivity, we modified its structure at the C-terminus by amidation catalyzed by a recombinant amidase in bacterial cells. The human gene coding for glucagon-gly was PCR amplified using three overlapping primers and cloned together with a rat ${\alpha}$-amidase gene in plasmid pMGA. Both genes were expressed under control of the strong constitutive promoter of aph and secretion signal melC1 in Streptomyces lividans. With Phenyl-Sepharose 6 FF, Q-Sepharose FF, SP-Sepharose FF chromatographies and HPLC, the peptide was purified to about 93.4% purity. The molecular mass of the peptide is 3.494 kDa as analyzed by MALDI TOF, which agrees with the theoretical mass value of the C-terminal amidated glucagon. The N-terminal sequence of the peptide was also determined, confirming its identity with human glucagon at the N-terminal part. ELISA showed that the purified peptide amide is bioactive in reacting with glucagon antibodies.

세균의 Peptide Deformylase(PDF)를 억제하는 새로운 항균물질의 스크리닝 (Screening of New Antibiotics Inhibiting Bacterial Peptide Deformylase (PDF))

  • 곽진환;김현주;설민정;서병선;이종국;최수영
    • 약학회지
    • /
    • 제47권3호
    • /
    • pp.184-189
    • /
    • 2003
  • Peptide deformylase (PDF) is essential and unique to bacteria, thus making it an attractive target for the discovery of novel antibacterial drugs. PDF deformylates the N-formylmethionine of newly synthesized polypeptides in prokaryotes. In this study, a pdf gene from Staphylococcus aureus 6538p was cloned in pET-14b vector and PDF protein was over-produced in Escherichia coli BL21 (DE3). NH$_2$-terminal His-tagged PDF protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography. Enzymatic activity of purified 6xHis-tagged PDF was tested on the substrate (formyl-Methionine-Alanine-Serine) by formate dehydrogenase-coupled spectrometric assay of peptide deformylase. For the discovery of new PDF inhibitors from chemical libraries and culture broths of soil bacteria, a target-oriented screening system using a 96-well plate was developed. About 3,000 commercial chemical libraries were tested in this screening system, and 2 chemicals (0.07%) among them showed an inhibitory activity against PDF enzyme. This result showed that a new screening system can be used for the discovery of new PDF inhibitors.

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

Ribosomal Crystallography: Peptide Bond Formation, Chaperone Assistance and Antibiotics Activity

  • Yonath, Ada
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.1-16
    • /
    • 2005
  • The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3'ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A-to P-site passage of the tRNA 3'end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by genefusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

Isolation and Characterization of Two Amino Acid-activating Domains of Peptide Synthetase Gene from Bacillus subtilis 713

  • Lee, Youl-Soon;You, Sang-Bae;Lee, Ji-Wan;Kim, Tae-Young;Kim, Sung-Uk;Bok, Song-Hae
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권4호
    • /
    • pp.399-405
    • /
    • 1998
  • From the sequence alignment of various non-ribosomal peptide synthetases, several motifs of highly conserved sequences have been identified within each domain of peptide synthetases. We designed PCR primers based on the highly conserved nucleotide sequences to amplify and isolate a ∼7.2-kb DNA fragment of the Bacillus subtilis 713 which was isolated and reported to produce an antifungal peptide compound. Nucleotide sequence analysis of 4.8 kb of the predicted amino acids revealed significant homology to various peptide synthetases over the whole sequence and also revealed two amino acid-activating domains with highly conserved Core 1 to Core 6 and spacer motif. This suggests that the isolated DNA fragment is part of a peptide synthetase gene for antifungal peptide.

  • PDF

A Putative Peptide Synthetase from Bacillus subtilis 713 Recognizing $_{L}-Lysine,{\;}_{L}-Tryptophan,{\;}and{\;}_{L}-Glutamic$ Acid

  • Kim, Kyoung-Rok;Lee, In-Hyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.798-803
    • /
    • 2001
  • Peptide synthetases produced from various microorganisms are multifunctional enzyme complexes and their substrates are recognized and activated by adenylation domains. To identify the substrate specificity of the peptide synthetase isolated from Bacillus subtilis 713, known to produce an antifungal peptide, two adenylation domains containing the minimal functional portion were expressed and purified. ATP-ppi exchange experiments and kinetic studies revealed that the two adenylation enzymes had a substrate specificity to $_{L}-lysine{\;}and{\;}_{L}-tryptophan$, respectively. In addition, based on a signature sequence comparison, the substrate of the third domain was predicted to be L-glutamic acid. These results suggest that this peptide synthetase is novel because there has been no previous report on a peptide synthetase that uses $_{L}-lysine,{\;}_{L}-tryptophan,{\;}and{\;}_{L}-glutamic$ acid as substrates in that order.

  • PDF

Identification of Novel Bioactive Hexapeptides Against Phytopathogenic Bacteria Through Rapid Screening of a Synthetic Combinatorial Library

  • Choi, Jae-Hyuk;Moon, Eun-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.792-802
    • /
    • 2009
  • Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-$NH_2$), KCM12 (KWRWlW-$NH_2$), KCM21 (KWWWRW-$NH_2$), and KRS22 (WRWFIH-$NH_2$), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.