• Title/Summary/Keyword: Pepper stem

Search Result 133, Processing Time 0.028 seconds

Biological Control of Stem Rot of Pepper caused by Sclerotium rolfsii using by Bacillus amyloliquefaciens KBC1009 (길항세균 Bacillus amyloliquefaciens KBC1009를 이용한 고추 흰비단병의 생물학적 방제)

  • Kang, Jae-Gon;Lee, Young-Ui;Park, Jeong-chan;Jeong, Yoon-Woo;Park, Chang-Seuk;Kang, Hoon-Serg
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • Sclerotium rolfsii is a well known broad host range soil borne plant pathogenic fungus and caused serious damage to various vegetable crops. To develop an effective biological control agent for S. rolfsii, an isolate which showed strong inhibitory effect on the mycelial growth of S. rolfsii was selected among the antagonistic bacterial isolates collected from vinyl-house soil. The bacterial isolate was identified as Bacillus amyloliquefaciens KBC1009 based on the morphological, physiological characteristics and by 16S rRNA sequence analysis. The growth conditions for B. amyloliquefaciens KBC1009 were optimized in LB media(pH7) by culturing at 30℃ for 72 hrs. Glucose and yeast extract were confirmed as the best carbon and nitrogen sources, respectively. In order to test the inhibitory effect of B. amyloliquefaciens KBC1009 to stem rot of pepper, green house experiment was conducted. Drench of 1/500 diluted bacterial suspension of B. amyloliquefaciens KBC1009(5×108 cfu/ml) to each pepper plant 3 times with 10 days interval showed 66.7% control effectiveness. These results suggest that B. amyloliquefaciens KBC1009 is one of promising biocontrol agent to control stem rot caused by Sclerotium rolfsii.

Pottery Glaze Making and It′s Properties by Using Grain Stem Ash & Vegetables Ash (곡물재와 채소재를 이용한 도자기용 유약제조와 그 특성)

  • Han, Young-Soon;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.834-841
    • /
    • 2004
  • The purpose of this study is to investigate the properties of traditional Korean ash glazes by using locally available sources; 10 kinds of grain stems,2 kinds of husks (pod, chaff), and 4 kinds of vegetables (spinach, radish leaf and stem, pumpkin leaf and stem, pepper stem), and to develop their practical uses as ash glazes. The test results of these ash glazes indicate that these ashes can be classified into four categories. The first group, which includes perilla stem ash, sesame stem ash, black bean stem ash and red-bean stem ash, shows strong milky white due to relatively lower content of $SiO_2$, and relatively higher content of CaO and P$_2$O$\_$5/ content (10% higher than others), and their glazes were found to be suitable for opaque glaze as they show relatively stable bright greenish color. The second group includes pepper stem ash, spinach ash, pod ash, radish leaf and stem ash, and bean stem ash, and this group was found to contain even quantity of every component. And their glaze show somewhat greenish color because of especially high content of MgO and more than 2% of Fe$_2$ $O_3$. They were found to be suitable for basic glaze of IRABO glaze. The third group, which includes com stalk ash, white bean ash, pumpkin leaf and stem ash, has more $SiO_2$ and Al$_2$ $O_3$ than other ashes, and it also contains 3~5% of Fe$_2$ $O_3$. As a result of those components, this third group shows the greatest change of color and chroma, and was found to be suitable glazes as basic glaze of Temmoku and black glazes. The fourth group (reed ash, rice straw ash, indian millet stalk ash and chaff ash) has as much as 45~82% of $SiO_2$ and relatively lower content of Fe$_2$ $O_3$ and P$_2$ $O_3$. This group shows blue or greenish white color, and was found to be suitable as the basic glaze of white glaze.

Effect of Beer Sewage Sludge Application on Red Pepper (고추에 대한 맥주오니(麥酒汚泥) 시용효과시험(施用效果試驗)(제(第)I보(報)))

  • Yuk, Chang-Soo;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 1985
  • A filed experiment was carried out to investigate the effects for growth, yield of red lopper (Saelona) and properties of soil by beer sewage sludge application to the sandy loam which fertility was common. The results obtained were summerized as follows. 1. Growth of red pepper in sludge plot was very poor by drought in early stage, but color of loaves was green and growth strength was better than nontreated plot after rainfall in last stage. There were no significant differencies between plant height, number of branch on main stem and stem height in sludge and standard plot. 2. Yield of matured red pepper per plant in NPK+, and PK+ sludge 1200kg, 2400kg and 4800kg/10a plot were less than those in standard plot respectively. 3. Ratio of dry weight of matured red pepper in NPK+, and PK+ sludge 1200kg, 2400kg and 4800kg/10a were high than those in standard plot appreciably. 4. Sewage sludge application (1200kg/10a. N=51kg) was available as nitrogen source of organic fertilizer considerably, but there were some growth inhibition by excess of amount applied. 5. Sewage sludge application decreased the pH of the soil and increased the content of organic matter and exchangeable babe in the soil appreciably.

  • PDF

Studies on the Low-temperature Storage of Strawberry Pulp and Red Pepper Paste by Cryoprotectants (동결방지제에 의한 딸기펄프와 붉은생고추 페이스트의 저온저장에 관한 연구)

  • Jeong, Jin-Woong;Jo, Jin-Ho;Kwon, Dong-Jin;Kim, Young-Boong
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.434-438
    • /
    • 1990
  • With adding cryoprotectants to red pepper paste and strawberry pulp, the effects of freezing point depression and the energy requirement for storage at $-15^{\circ}C$ were studied. In case of red pepper paste, the freezing point was pressed to $-9.6^{\circ}C$ by adding NaCl(15% w/w) and citric acid after removing stem. And the components of combined cryoprotectants to keep strawberry pulp in the unforzen state at $-15^{\circ}C$ were dextrose(25% w/'w), fructose(17% w/w) sorbitol(8% w/w) and ascorbic acid(0.2%, w/w). Also, when compared with No-treatment, the storage time reduced about 50% and resulted in about $70{\sim}80%$ cut-down in the energy requirement for storage of food products at low-temperature.

  • PDF

Effect of Chitosan and Wood Vinegar on the Growth and Nutrient Absorption of Red Pepper (Capsicum annum L.) (키토산과 목초액 처리가 고추의 생육 및 양분흡수에 미치는 영향)

  • 엄미정;박현철;문영훈;김갑철;한수곤
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.67-73
    • /
    • 2002
  • This study was conducted to investigate the effect of organic agricultural materials, chitosan and wood vinegar, on the growth and yield of red pepper and soil microflora. In the chitosan treatments, the density of actinomycetes in soils increased, while the density of fungi decreased. Compared with the conventional cultivation, the stem diameter of red pepper was greater in the chitosan or wood vinegar experimental plots at 50 days after transplanting, though there was no difference in chlorophyll content among treatments. The incidence of disease and insect was higher in the treatments of organic agricultural materials than the conventional cultivation, regardless of application frequency. Contents of cations such as Ca and K in leaves and fruits increased by chitosan treatment. In all experimental plots, fruit yield decreased because of diseases and insects. But in chitosan treatment plot with 10 times of application, characteristics of fruits were superior to others and the yield index of red pepper was the highest as 92.4% as compared to the conventional cultivation.

Factorial Experiment for Drum-type Secondary Separating Part of Self-propelled Pepper Harvester

  • Nam, Ju-Seok;Kang, Young-Sun;Kim, Su-Bin;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.242-250
    • /
    • 2017
  • Purpose: This study was conducted to determine the appropriate operating conditions through a factorial experiment for the secondary separating part of the self-propelled pepper harvester. Methods: An experimental setup that simulates the secondary separating part of the self-propelled pepper harvester was organized. Test samples were classified into three types according to the number of peppers on a stem, and 12 sets were prepared for each type. Among the operating conditions of the secondary separating part, the rotational speed of drum B (four levels), radial clearance between drums and cylindrical teeth (three levels), and speed ratio between the three drums (two levels) were set as the test factors, and tests were repeated three times for different levels of each factor. The appropriate operating conditions were determined by analyzing the separation ratio and damage ratio of the peppers collected through the secondary separating part. Results: The test factors changed the overall separation ratio and overall damage ratio in similar trends. In other words, the conditions that caused high overall separation ratios also exhibited high overall damage ratios. Owing to the high overall damage ratio in the condition with the highest overall separation ratio, the operating conditions should be selected considering both ratios. Conclusions: When the condition with more than 60% of overall separation ratio and less than 15% of overall damage ratio was considered as the appropriate operating condition, 70 rpm of the rotational speed of drum B, 5 mm of the radial clearance between drums and cylindrical teeth, and 7:3:5 for the speed ratio of the three drums A, B, and C should be applied for the secondary separating part used in this study. Supplementary studies will be required in the future to find optimal operating conditions through the actual field test under further divided test factors.

Influence of Air Temperature and Soil Moisture Conditions on the Growth and Yield of Hot Pepper under a Plastic Tunnel Culture (고추의 비가림재배 시 온도와 토양수분 환경이 생육 및 수량에 미치는 영향)

  • Lee, Hee Ju;Lee, Sang Gyu;Choi, Chang Sun;Kim, Jun Hyeok;Kim, Sung Kyeom;Jang, Yun Ah;Lee, Sang Jung
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.769-776
    • /
    • 2015
  • This study was conducted to determine the effects of high temperature and deficit irrigation on growth and yield of hot pepper. Hot pepper was subjected to four irrigation treatments: fully irrigation (FI), 10, 20, and 30 days deficit irrigation (DI) combination with high temperature treatment. Control plants were grown natural environment and conventional culture methods. The plant height treated with high temperature was significantly higher than that of control plant. At FI combination with high temperature treatment, growth parameters such as stem diameter, leaf area, fresh and dry weight were the greatest. The yield was the greatest (2,036 kg/10a) under control, DI combination with high temperature treatment decreased by approximately 42% compare with FI combination with high temperature treatment. The number of abnormal fruits was approximately 38/plant under control, which was the smallest and that of 30 days DI combination with high temperature was higher 3.3 times compare with control. Flower abscission and calcium deficiency induced by DI treatments, especially those physiological disorder promoted by increasing DI treatments period. Results indicated that yield of hot pepper reduced by DI treatments, these results suggest that the growers should irrigate to proper soil moisture for preventing reduction of total fruit yield.

Effects of the Applications of Clay Minerals on the Early Growth of Red Pepper in Growing Medium (점토광물 처리에 따른 상토에서 고추의 초기생장 효과)

  • Lee, Dong-Gi;Lee, Seok-Eon;Kim, Deok-Hyun;Hong, Hyeon-Ki;Nam, Ju-Hyun;Choi, Jong-Soon;Lee, Moon-Soon;Woo, Sun-Hee;Chung, Keun-Yook
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.463-470
    • /
    • 2012
  • As the advanced seeding technology through use of plug tray for good cultivation of seeds was propagated along with the expansion and development of horticultural industry, the use of bed soils as growing medium has recently been increased. In this study, the effects of the four clay minerals such as illite, phyllite, zeolite, and bentonite on the early growth of red pepper in the bed soil were investigated. Furthermore, proteome analysis for the leaf and stem samples of red pepper treated with only illite was performed. Of the seedling cultured, the healthy and regular size seeds were selected and cultivated in the pots, after they were treated with four clay minerals. The experiment was performed during the whole six weeks in the glasshouse of the Chungbuk National University. The growth lengths, fresh and dry weights of red pepper were significantly higher in the treatments of illite, phyllite, zeolite, and bentonite than in the control. In addition, the uptake of $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were higher in the treatment of illite, phyllite, zeolite, and bentonite than in the control. The 2-DE patterns for the red pepper by the applications of illite, phyllite, zeolite, and bentonite were similar to each other. Therefore, compared to the samples of control, the proteome analysis for the samples of red pepper treated by only illite were performed. Proteome analysis for red pepper showed that plastid fructose-1, 6-bisphosphate aldolase class 1, aldolase, and glyceraldehydes 3-phosphate dehydrogenase, all of which were involved in the energy metabolism, were highly expressed in leaf tissue by illite treatment. In stem tissue, NAD-dependent formate dehydrogenase involved in energy metabolism, potassium transport protein, and GIA/RGA-like gibberellins response modulator were highly expressed. Based on the results obtained from the proteome analysis, it appears that the proteins specifically and differentially expressed on the illite treatment may be involved in the enhanced growth of red pepper. The identification of some proteins involved in the response of vegetable crops to the treatment of clay mineral can provide new insights that can lead to a better elucidation and understanding of mechanism on their molecular basis.

Effects of Light Quality and Intensity on the Carbon Dioxide Exchange Rate, Growth, and Morphogenesis of Grafted Pepper Transplants during Healing and Acclimatization

  • Jang, Yoonah;Mun, Boheum;Seo, Taecheol;Lee, Jungu;Oh, Sangseok;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.14-23
    • /
    • 2013
  • This study evaluated the influence of light quality and intensity during healing and acclimatization on the $CO_2$ exchange rate, growth, and morphogenesis of grafted pepper (Capsicum annuum L.) transplants, using a system for the continuous measurement of the $CO_2$ exchange rate. C. annuum L. 'Nokkwang' and 'Tantan' were used as scions and rootstocks, respectively. Before grafting, the transplants were grown for four weeks in a growth chamber with artificial light, where the temperature was set at $25/18^{\circ}C$ (light/dark period) and the light period was 14 hours $d^{-1}$. The grafted pepper transplants were then healed and acclimatized under different light quality conditions using fluorescent lamps (control) and red, blue, and red + blue light-emitting diodes (LEDs). All the transplants were irradiated for 12 hours per day, for six days, at a photosynthetic photon flux (PPF) of 50, 100, or 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The higher PPF levels increased the $CO_2$ exchange rate during the healing and acclimatization. A smaller increase in the $CO_2$ exchange rates was observed in the transplants under red LEDs. At a PPF of 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the $CO_2$ exchange rate of the transplants irradiated with red LEDs was lowest and it was 37% lower than those irradiated with fluorescent lamps. The $CO_2$ exchange rates of transplants irradiated with blue LEDs was the highest and 20% higher than those irradiated under fluorescent lamps. The graft take was not affected by the light quality. The grafted pepper transplants irradiated with red LEDs had a lower SPAD value, leaf dry weight, and dry matter content. The transplants irradiated with blue LEDs had longer shoot length and heavier stem fresh weight than those irradiated with the other treatments. Leaves irradiated with the red LED had the smallest leaf area and showed leaf epinasty. In addition, the palisade and spongy cells of the pepper leaves were dysplastic and exhibited hyperplasia. Grafted pepper transplants treated with red + blue LEDs showed similar growth and morphology to those transplants irradiated with fluorescent lamps. These results suggest that high-quality grafted pepper transplants can be obtained by healing and acclimatization under a combination of blue and red lights at a high PPF level.

Effects of the High Pressure Sodium Lamp Lighting on the Dynamics of Growth and Dry Mass Partitioning in Sweet Pepper Plant (고압나트륨등 조사가 파프리카의 동적 생장과 건물분배율에 미치는 영향)

  • Kim, Eun Jeong;Lee, Sang Hyun;Lee, Jeong Hyun
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.565-572
    • /
    • 2013
  • The objective of this study was to describe and analyze the effect of high pressure sodium lamp lighting (HPS) on dynamics of growth and dry matter partitioning, and light use efficiency of sweet pepper crop grown over winter season. Young sweet pepper seedlings were planted at 3.75 plants per $m^2$ on September 29, 2010 and treated with HPS for 16 hours from December 14, 2010 until March 18, 2011. The number of leaves per plant were significantly increased with HPS, whereas the number of internodes and leaf area were less affected. HPS reduced the plant height with higher number of fruits per stem compared to those of without HPS lighting (CON). There were large differences in total dry mass production, stem and fruit dry mass between HPS and CON and those with HPS increased by 67.8%, 28.5%, and 97.1% compared to CON, respectively. Each organs of dry mass partitioning was calculated by leaf, stem or fruit growth rate divided by total plant growth rate. Dynamics of dry mass partitioning to leaf and stem between HPC and CON was measured in range of 45-47% at beginning of growth phase and drastically decreased after starting fruit growth in both treatments. Dry matter partitioning to vegetative organs was 4% higher compared to the plant grown under HPS lighting. Averaged dry matter partitioning to fruit with HPS, however, was largely increased by 14.2% compared to CON. Dynamics of the plant growth were well described by expolinear growth equation with three parameters of maximum relative growth rate, absolute growth rate and lost time to reach linear phase. The maximum growth rate of leaf, stem and fruit with HPS was increased by 18.6%, 74.7%, and 143.5% compared to CON. There was a linear relationship between intercepted light integral and vegetative organs (leaf and stem), fruit or total dry mass production. Light use efficiency (LUE, $g{\cdot}MJ^{-1}$) of total dry mass was $4.90g{\cdot}MJ^{-1}$ for HPS and $3.84g{\cdot}MJ^{-1}$ for CON, LUE of vegetative organs was $1.56g{\cdot}MJ^{-1}$ for HPS and $1.61g{\cdot}MJ^{-1}$ for CON and LUE of fruit dry mass was $3.34g{\cdot}MJ^{-1}$ for HPS and $2.23g{\cdot}MJ^{-1}$ for CON. The difference in LUE of total dry mass between treatments, therefore, occurred mainly from the different in LUE of fruit dry mass.