• Title/Summary/Keyword: Pennisetum purpureum

Search Result 46, Processing Time 0.028 seconds

The Effect of Harvesting Interval on Herbage Yield and Nutritive Value of Napier Grass and Hybrid Pennisetums

  • Manyawu, G.J.;Chakoma, C.;Sibanda, S.;Mutisi, C.;Chakoma, I.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.996-1002
    • /
    • 2003
  • A 6 (accession)${\times}$5 (cutting interval) factorial experiment was conducted over two years to investigate the effect of stage of growth on herbage production, nutritive value and water soluble carbohydrate (WSC) content of Napier grass and Napier grass${\times}$Pearl millet hybrids (hybrid Pennisetum). The purpose of the experiment was to determine the optimum stage of growth to harvest the Pennisetums for ensilage. Two Napier accessions (SDPP 8 and SDPP 19) and four hybrid Pennisetum (SDPN 3, SDPN 29, SDPN 38 and Bana grass) were compared at five harvest intervals (viz. 2, 4, 6, 8, and 10 weeks). Basal fertilizers were similar in all treatment plots, although nitrogen (N) top-dressing fertilizer was varied proportionately, depending on the harvesting interval. The application was based on a standard rate of 60 kg N/ha every six weeks. Stage of growth had significant effects on forage yield, WSC content and nutritive value of the Pennisetums. Herbage yields increased in a progressively linear manner, with age. Nutritive value declined as the harvesting interval increased. In particular, crude protein content declined rapidly (p<0.001) from $204g\;kg^{-1}$ DM at 2 weeks to $92g\;kg^{-1}$ DM at 8 weeks of growth. In vitro dry matter digestibility decreased from 728 to $636g\;kg^{-1}$ DM, whilst acid and neutral detergent fibre contents increased from 360 and 704 to 398 and $785g\;kg^{-1}$ DM, respectively. Rapid changes in nutritive value occurred after 6 weeks of growth. The concentration of WSC increased in a quadratic manner, with peaks ($136-182g\;kg^{-1}$ DM) at about 6 weeks. However, the DM content of the forage was low ($150-200g\;DM\;kg^{-1}$) at 6 weeks. Therefore, it was concluded that Pennisetums should be harvested between 6 and 7 weeks, to increase DM content and optimize herbage production without seriously affecting nutritive value and WSC content. Accessions SDPN 29 and SDPP 19 appeared to be most suited for ensilage. It was suggested that WSC content should be incorporated as a criterion in the agronomic evaluation and screening of Pennisetum varieties.

Seasonal Changes in Nutritive Value of Some Grass Species in West Sumatra, Indonesia

  • Evitayani, Evitayani;Warly, L.;Fariani, A.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1663-1668
    • /
    • 2004
  • This study was carried out to evaluate the potential nutritive value of commonly found grasses collected at native pasture in West Sumatra, Indonesia during dry and rainy seasons. Variables measured included chemical composition, in vitro digestibility, concentration of Ca, P and Mg, gas production and metabolizable energy (ME) content of the grasses. The results showed that species and season had significant effect on chemical composition and mineral concentration. Crude protein content in the dry season ranged from 6.5% (B. decumbens) to 14.4% (P. maximum) and increased slightly from 7.8% (B. decumbens) to 14. 8% (A. compressus) in the rainy season. Data on fiber fraction showed that grass contained more NDF, ADF and ADL in dry season than in rainy season. Data on mineral concentration showed that C. plectostachyus and P. maximum in dry season had higher Ca than those of other species, while in rainy season P. maximum had highest Ca concentration. In dry season, the DMD varied from 50. 4% (P.purpuphoides) to 59.1% (P. purpureum), while in rainy season ranged from 50.3% (A. gayanus) to 61.8% (P. purpureum). The potential and rate of gas production were significantly (p<0.05) affected by species and season. During dry season, potential of gas production ranged from 21.8 ml/200 mg (A. compressus) to 45.1 ml/200 mg (C. plectostachyus), while in rainy season it varied from 35.6 ml/200 mg (A. gayanus) to 47.5 ml/200 mg (P. purpureum). ME content of grasses varied from 6.0 to 8.3 MJ/kg in dry season and increased slightly from 6.4 to 8.6 MJ/kg in rainy season. Both in dry and rainy seasons, the highest ME content was occurred in P. purpureum and C. plectostachyus. In conclusion, nutritive value of the observed grasses in West Sumatra, Indonesia was relatively higher during rainy season compared with dry season. Pennisetum purpureum and Cynodon plectostachyus had the best nutritive value in both dry and rainy seasons.

In Vitro antioxidant effect of ethanol extract from Pennisetum purpureum (Napier grass (Penninsetum purpureum) 에탄올 추출물의 in vitro 항산화 효과)

  • Kwon, Young Ji;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.167-172
    • /
    • 2019
  • In vitro antioxidant effect of 50% ethanol extract from Napier grass (Penninsetum purpureum) was investigated. The yield and polyphenol content of the Napier grass extract were $6.3{\pm}0.35%$ and $79.6{\pm}3.65{\mu}g$ gallic acid equivalents/mg-extract, respectively. Antioxidant ability of the Napier grass extract such as fee radical and cation radical scavenging activities, reducing power, nitrite scavenging activity, and lipid peroxidation inhibitory activity proportionally increased as concentration of the extract increased. $EC_{50}$ values of the Napier grass extract for free radical scavenging, cation radical scavenging, reducing power, and nitrite scavenging were 1,930.0, 350.0, 840.0, and $1,470.0{\mu}g/mL$, respectively. In the presence of $85.0{\mu}g/mL$ of the Napier grass extract, lipid peroxidation was potently inhibited by 74.6%.

NUTRITIONAL QUALITY OF WILTED NAPIER GRASS (Pennisetum purpureum Schum.) ENSILED WITH OR WITHOUT MOLASSES

  • Yokota, H.;Kim, J.H.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.673-679
    • /
    • 1992
  • To investigate the effects of molasses addition at ensiling on nutritional quality of wilted napier grass, chemical quality and nutrient composition of the silages, digestibility and nitrogen retention at feeding trials were analysed using 4 goats in a cross over design. The results are as follows : 1. Molasses addition at ensiling decreased pH value (3.99) and ammonia nitrogen, and increased lactic acid content by 285% compared to non-additive silage (83.5 g/kg dry matter). 2. There were no differences in digestibilities of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, hemicellulose and cellulose between the silage ensiled with molasses (MS silage) and the silage ensiled without molasses (WS silage). Urinary nitrogen excretion, however, significantly (p<0.05) decreased in goats fed the MS silage, and nitrogen retention was positive in goats fed the MS silages, but negative in goats fed the WS silage. 3. Acetic acid concentration in remained fluids in goats fed the MS silage was lower and propionic and butyric acid concentrations were higher than those in goats fed the WS silage. As water soluble carbohydrate content was higher in the MS silage than in the WS silage, a part of added molasses was still remained in the silage at the feeding trials and could be utilized for energy sources by the goats. Nitrogen may be also effectively utilized in goats fed the MS silage, because the silage were inhibited in proteolysis during ensiling.

Effect of Additives, Storage Temperature and Regional Difference of Ensiling on the Fermentation Quality of Napier Grass (Pennisetum purpureum Schum.) Silage

  • Tamada, J.;Yokota, H.;Ohshima, M.;Tamaki, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 1999
  • The effects of addition of celulases (A cremonium cellulolyticus and Trichoderma viride, CE), a commercial inoculum containing lactic acid bacteria (Lactobacillus casei, LAB), fermented green juice (macerated napier grass with water was incubated anaerobically with 2% glucose for 1 day, FGJ) and glucose (G), and regional difference of ensiling on napier grass (Pennisetum purpureum Schum.) silage were studied by using 900 ml laboratory glass bottle silos under 30 and $40^{\circ}C$ storage conditions in 1995 and 1996. Experiment 1 was carried out to compare the addition of CE, LAB, FGJ and the combinations. Silages were stored for 45 days after ensiling. Experiment 2 studied the effects of applications of CE, LAB, FGJ and G. Experiment 3 was carried out using the similar additives as experiment 2 except for LAB. Silages were stored for 60 days in the experiments 2 and 3. Experiments 1 and 2 were done in Nagoya, and experiment 3 in Okinawa. Sugar addition through CE or G improved the fermentation quality in all the experiments, which resulted in a greater decrease in the pH value and an increased level of lactic acid, while butyric acid contents increased under $30^{\circ}C$ storage condition in CE addition. LAB and FGJ additions hardly affected the silage fermentation quality without additional fermentable carbohydrate. But the combination of LAB, FGJ and glucidic addition (CE and G) improved the fermentation quality. The effect of the regional difference of ensiling between temperate (Nagoya; $35^{\circ}$ N) and subtropical (Okinawa; $26.5^{\circ}$ N) zones on silage fermentation quality was not shown in the present study.

Effect of Variety on Proportion of Botanical Fractions and Nutritive Value of Different Napiergrass (Pennisetum purpureum) and Relationship between Botanical Fractions and Nutritive Value

  • Islam, M.R.;Saha, C.K.;Sarker, N.R.;Jalil, M.A.;Hasanuzzaman, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.837-842
    • /
    • 2003
  • Five varieties of napiergrasses (Pennisetum purpureum) were fractionated botanically into leaf blade, leaf sheath, stem and head. Chemical composition of each of whole napiergrass and their botanical fractions were determined. Correlation, linear and multiple regressions between botanical fractions and nutritive value of varieties of napiergrass were also estimated. All botanical fractions differed due to the effect of variety. Napier Pusha contained the highest proportion of leaf blade and internode, but the lowest proportion of leaf sheath. Napier Hybrid contained the lowest proportion of leaf blade, but highest proportion of node. Consequently, napier Pusha contained the highest (p<0.01) crude protein (CP, 9.0%), but Napier Hybrid had the lowest CP (7.0%). Chemical composition of whole plant differed significantly (p<0.01; except NFE, p>0.05) due to the variety. Not only the whole plant, chemical composition of most botanical fractions of whole plant differed (p<0.05 to 0.01) due to the variety. The intrarelationships between leaf blade and leaf sheath was negative (r=-0.43). Leaf sheath was also negatively correlated to CP, but positively correlated to ash of whole Napier or their botanical fractions. Leaf blade, on the other hand, increases CP but decreases ash content of whole plant or their fractions. These results, therefore, suggest that napiergrass varieties differ widely in terms of botanical fractions and nutritive value, which may have important implications on intake and productivity of animals. Furthermore, napiergrass varieties should be selected for leaf blade only for a better response.

Comparative study of some analytical methods to quantify lignin concentration in tropical grasses

  • Velasquez, Alejandro V.;Martins, Cristian M.M.R.;Pacheco, Pedro;Fukushima, Romualdo S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1686-1694
    • /
    • 2019
  • Objective: Lignin plays a relevant role in the inhibition of cell wall (CW) structural carbohydrate degradation. Thus, obtaining accurate estimates of the lignin content in tropical plants is important in order to properly characterize the mechanism of lignin action on CW degradation. Comparing conflicting results between the different methods available for commercial use will bring insight on the subject. This way, providing data to better understand the relationship between lignin concentration and implications with tropical forage degradation. Methods: Five grass species, Brachiaria brizantha cv $Marand{\acute{u}}$, Brachiaria brizantha cv $Xara{\acute{e}}s$(MG-5), Panicum maximum cv Mombaça, Pennisetum purpureum cv Cameroon, and Pennisetum purpureum cv Napier, were harvested at five maturity stages. Acid detergent lignin (ADL), Klason lignin (KL), acetyl bromide lignin (ABL), and permanganate lignin (PerL) were measured on all species. Lignin concentration was correlated with in vitro degradability. Results: Highly significant effects for maturity, lignin method and their interaction on lignin content were observed. The ADL, KL and ABL methods had similar negative correlations with degradability. The PerL method failed to reliably estimate the degradability of tropical grasses, possibly due to interference of other substances potentially soluble in the $KMnO_4$ solution. Conclusion: ADL and KL methods use strong acid ($H_2SO_4$) and require determination of ash and N content in the lignin residues, therefore, increasing time and cost of analysis. The ABL method has no need for such corrections and is a fast and a convenient method for determination of total lignin content in plants, thus, it may be a good option for routine laboratory analysis.

New roughage source of Pennisetum purpureum cv. Mahasarakham utilization for ruminants feeding under global climate change

  • Mapato, Chaowarit;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1890-1896
    • /
    • 2018
  • Objective: As the climate changes, it influences ruminant's feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham; SG) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Methods: Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a $4{\times}4$ Latin square design to receive four dietary treatments. Treatment 1 (T1) was rice straw (RS) fed on ad libitum with 1.0% body weight (BW) of concentrate (C) supplementation (RS/1.0C). Treatment 2 (T2) and treatment 3 (T3) were SG, fed on ad libitum with 1.0% and 0.5% BW of concentrate supplementation, respectively (SG/1.0C and SG/0.5C, respectively). Treatment 4 (T4) was total Sweet grass fed on ad libitum basis with non-concentrate supplementation (TSG). Results: The results revealed that roughage and total feed intake were increased with SG when compared to RS (p<0.01) while TSG was like RS/1.0C treatment. Digestibility of nutrients, nutrients intake, total volatile fatty acids (VFAs), rumen microorganisms were the highest and CH4 was the lowest in the heifers that received SG/1.0C (p<0.01). Total dry matter (DM) feed intake, digestibility and intake of nutrients, total VFAs, $NH_3-N$, bacterial and fungal population of animals receiving SG/0.5C were higher than those fed on RS/1.0C. Reducing of concentrate supplementation with SG as a roughage source increased $NH_3-N$, acetic acid, and fungal populations, but it decreased propionic acid and protozoal populations (p<0.05). However, ruminal pH and blood urea nitrogen were not affected by the dietary treatments (p>0.05). Conclusion: As the results, SG could be a good forage to improve rumen fermentation, decrease methane production and reduced the level of concentrate supplementation for growing ruminants in the tropics especially under global climate change.

Fermentation Characteristics and Microbial Diversity of Tropical Grass-legumes Silages

  • Ridwan, Roni;Rusmana, Iman;Widyastuti, Yantyati;Wiryawan, Komang G.;Prasetya, Bambang;Sakamoto, Mitsuo;Ohkuma, Moriya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.511-518
    • /
    • 2015
  • Calliandra calothyrsus preserved in silage is an alternative method for improving the crude protein content of feeds for sustainable ruminant production. The aim of this research was to evaluate the quality of silage which contained different levels of C. calothyrsus by examining the fermentation characteristics and microbial diversity. Silage was made in a completely randomized design consisting of five treatments with three replications i.e.: R0, Pennisetum purpureum 100%; R1, P. purpureum 75%+C. calothyrsus 25%;, R2, P. purpureum 50%+C. calothyrsus 50%; R3, P. purpureum 25%+C. calothyrsus 75%; and R4, C. calothyrsus 100%. All silages were prepared using plastic jar silos (600 g) and incubated at room temperature for 30 days. Silages were analyzed for fermentation characteristics and microbial diversity. Increased levels of C. calothyrsus in silage had a significant effect (p<0.01) on the fermentation characteristics. The microbial diversity index decreased and activity was inhibited with increasing levels of C. calothyrsus. The microbial community indicated that there was a population of Lactobacillus plantarum, L. casei, L. brevis, Lactococcus lactis, Chryseobacterium sp., and uncultured bacteria. The result confirmed that silage with a combination of grass and C. calothyrsus had good fermentation characteristics and microbial communities were dominated by L. plantarum.

Study on Forage Crop Production on Sloping Land and in Bangladesh

  • Huque, K.S.;Rahman, M.M.;Talukder, A.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.956-959
    • /
    • 2001
  • Three perennial grasses, Napier (Pennisetum purpureum), Andropogan (Andropogan gayanus) and Para (Brachiria mutica), were grown at different hill heights dividing the hill slope into three regions (top, middle and bottom). The first two grasses gave the highest biomass yields (29.9 and 37.6 tonnes/ha/harvest, respectively) followed by Para (20.5 t/ha). No significant (p>0.05) changes in biomass yields of the grasses were found due to differences in hill heights. The grasses were harvested three times in the first year of cultivation. Maize and cowpea as sole crops or their intercrops were cultivated in the plain land and the intercrop gave the highest biomass yield (46.7 t/ha, p<0.05). The biomass produced was successfully ensiled in the underground pits at the hill tops.