• Title/Summary/Keyword: Penman-Monteith algorithm

Search Result 13, Processing Time 0.023 seconds

Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model (위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구)

  • Ha, Rim;Shin, Hyung-Jin;Lee, Mi-Seon;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.233-242
    • /
    • 2010
  • SEBAL (Surface Energy Balance Algorithm for Land) developed by Bastiaanssen (1995) is an image-processing model comprisedof twenty-five sub models that calculates spatial evapotranspiration (ET) and other energy exchanges at the surface. SEBAL uses image data from Landsat or other satellites measuring thermal infrared radiation, visible and near infrared. In this study, the model was applied to Gyeongancheon watershed, the main tributary of Han river Basin. ET was computed on apixel-by-pixel basis from an energy balance using 4 years (2001-2004) Landsat and MODIS images. The scale effect between Landsat (30 m) and MODIS (1 km) was evaluated. The results both from Landsat and MODIS were compared with FAO Penman-Monteith ET. The absolute errors between satellite ETs and Penman-Monteith ET were within 12%. The spatial and temporal characteristics of ET distribution within the watershed were also analyzed.

Estimation and Evaluation of Spatial Evapotranspiration Using satellite images and SEBAL Model in Chungju dam watershed (위성영상과 SEBAL 모형을 이용한 충주댐 유역의 공간증발산량 산정 및 평가)

  • Ha, Rim;Shin, Hyung-Jin;Park, Min-Gi;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.47-51
    • /
    • 2009
  • 증발산량을 산정하는 것은 자연현상과 인문현상을 이해하는 것의 기초가 된다. 이에, 최근 증발산량을 추정하는 많은 연구가 진행되고 있는 가운데 원격탐사 기법을 이용하는 것이 효과적인 것으로 알려지고 있다. 본 연구에서 소개할 SEBAL (Surface Energy Balance Algorithm for Land) (Bastiaanssen, 1995) 모형은 Landsat이나 NOAA 또는 MODIS 같은 원격탐사 위성으로부터 획득한 디지털 이미지 데이터(위성영상)를 이용하여, 지표에서 일어나는 증발산과 기타의 에너지 교환을 계산하는 이미지-프로세싱 모델이다. 우리나라 대상 유역에 위성영상을 사용하여 증발산량을 추정하는 SEBAL 모형의 적용 가능성을 검토하여, 유역 내 증발산량 분포의 시공간적 특성을 분석하고자 하였다. 연구 대상 지역은 유역 면적 약 6661.1km2의 충주댐 유역으로, Terra MODIS 위성영상을 이용하였다. SEBAL 증발산량의 평가를 위해 Penman-Monteith 공식에 의해 계산된 증발산량을 이용하여 비교하였으며, 그 결과 오차가 허용 가능한 10% 이내로 나타났다.

  • PDF

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranspiration Time Series 1. Theory and Application of the Model (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 1. 모형의 이론과 적용)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.73-88
    • /
    • 2007
  • The goal of this research is to develop and apply the generalized regression neural networks model(GRNNM) embedding genetic algorithm(GA) for the estimation and calculation of the pan evaporation(PE), which is missed or ungaged and of the alfalfa reference evapotranspiration ($ET_r$), which is not measured in South Korea. Since the observed data of the alfalfa 37. using Iysimeter have not been measured for a long time in South Korea, the Penman-Monteith(PM) method is used to estimate the observed alfalfa $ET_r$. In this research, we develop the COMBINE-GRNNM-GA(Type-1) model for the calculation of the optimal PE and the alfalfa $ET_r$. The suggested COMBINE-GRNNM-GA(Type-1) model is evaluated through training, testing, and reproduction processes. The COMBINE-GRNNM-GA(Type-1) model can evaluate the suggested climatic variables and also construct the reliable data for the PE and the alfalfa $ET_r$. We think that the constructive data could be used as the reference data for irrigation and drainage networks system in South Korea.

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증)

  • Sur, Chan-Yang;Han, Seung-Jae;Lee, Jung-Hoon;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.435-448
    • /
    • 2012
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.

Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model in Gyeongancheon watershed (위성영상과 SEBAL 모형을 이용한 경안천 유역의 공간증발산량 산정)

  • Ha, Rim;Shin, Hyung-Jin;Park, Min-Gi;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.129-133
    • /
    • 2009
  • 본 연구에서 소개할 SEBAL (Surface Energy Balance Algorithm for Land) (Bastiaanssen, 1995) 모형은 Landsat이나 NOAA 또는 MODIS 같은 원격탐사 위성으로부터 획득한 디지털 이미지 데이터(위성영상)를 이용하여, 지표에서 일어나는 증발산과 기타의 에너지 교환을 계산하는 이미지-프로세싱 모델이다. SEBAL 모형은 1995년 Bastiaanssen에 의해 처음 제안되었고, 미국의 Idaho 주립대학과 Idaho Department of Water Resources에서 NASA와 기업의 지원을 받아 활발히 연구 되었으며, 25개의 sub model들을 이용하여 지표의 증발산량과 기타 여러 에너지 교환을 계산한다. 여기서, 열적외선 방사, 표시 및 근적외선 측정은 Landsat 또는 기타 여러 위성영상을 통해 얻을 수 있으며, SEBAL 모형은 이러한 자료를 활용한다. 모형에서의 증발산량(ET)은 에너지 균형원리를 통해 pixel-by-pixel을 기준으로 계산되며, 본 연구에서 SEBAL 모형은 한강 유역 내의 경안천 유역 증발산량 map 생성을 위해 6개년도 지점 Landsat 위성영상을 이용하어 추정되었다. 연구의 목적은 SEBAL 모형을 통해 생성 된 30m 해상도의 공간 증발산량 map의 활용성 평가와 검증이며, 검증을 위해 FAO Penman-Monteith 공식을 이용하여 추정된 증발산량 값을 이용하였다. 그 결과, 오차가 2.7% 이내로 나타났다.

  • PDF

Evaluation of actual evapotranspiration using the Modified Satellite-based Priestley-Taylor algorithm (Modified Satellite-based Priestley-Taylor (MS-PT) 알고리즘 기반 실제 증발산량 산정)

  • Choi, Minha;Park, Jongmin;Baik, Jongjin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.6-6
    • /
    • 2016
  • 최근 전 지구적인 기후 변화에 따라 수문 순환을 이루고 있는 다양한 수문 기상 인자들의 변동성에 영향을 미치고 있다. 특히, 증발산은 수문순환을 구성하는 중요한 인자로서 대기와 지표간의 상호 작용을 파악하기 위해서는 이에 대한 정확한 이해 및 산정이 필수적이다. 일반적으로 증발산량을 산정하기 위해서 증발 접시 및 에디 공분산 기반 플럭스 타워에서 관측된 지점 자료만을 이용하여 증발산량의 변동성을 파악하는 연구들이 수행되어왔다. 그러나 지점 자료만을 이용하여 증발산량을 산출하게 되면 공간적인 변동성을 파악하는데 있어서 한계점이 발생하게 된다. 이러한 제약 사항을 해결하기 위해서, 인공위성 기반의 수문 기상인자를 물리식 기반 증발산량 산정식의 입력 자료로 구축하여 증발산량을 산정하고 이에 대한 시 간적인 변동성을 파악하는 연구들이 활발히 이루어지고 있다. 인공위성 기반 증발산량 산정 알고리즘의 대표적인 예로 공기동역학적 항과 에너지 수지 항들을 동시에 고려할 수 있는 Penman-Monteith 방법을 근간으로 수정하여 만들어낸 Remote Sensing based Penman-Monteith (RS-PM) 알고리즘이 있다. 그러나 RS-PM 기반의 증발산량 경우 태양복사열, 풍속, 온도, 습도와 같은 많은 수문기상인자들이 입력 자료를 요구한다. 이에 따라, 본 연구에서는 기존의 방법에 비해 상대적으로 적은 입력 자료를 사용하는 Modified Satellite-Based Priestley-Taylor (MS-PT) algorithm의 적용성을 평가하기 위해 MODerate-Resolution Imaging Spectroradiometer (MODIS) 자료를 이용하여 한반도에서 순복사에너지 (Net radiation) 및 실제 증발산량 (Actual evapotranspiration)을 산정하였다. 또한, 이에 대한 검증을 위해 청미천 유역에 설치되어있는 에디 공분산 기반 플럭스 타워에서 관측된 순복사 에너지 및 실제 증발산량에 대한 통계적 검증을 실시하였다.

  • PDF

Reassessment on SEBAL Algorithm and MODIS Products

  • Uranchimeg, Sumiya;Kwon, Hyun-Han;Kim, Hyun-Mook;Kim, Yun-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.230-230
    • /
    • 2016
  • Hydrological modeling is a very complex task dealing with multi-source of data, but it can be potentially benefited from recent improvements and developments in remote sensing. The estimation of actual land surface evapotranspiration (ET), an important variable in water management, has become possible based entirely on satellite data. This study adopted a Surface Energy Balance Algorithm for Land (SEBAL) with the use of MODerate Resolution Imaging Spectrometer (MODIS) satellite products. The SEBAL model is one of the commonly used approach for the ET estimation. A primary advantage of the SEBAL model is rather its minimum requirement for ground-based weather data. The MODIS provides ET (MOD16) product that is based on the Penman-Monteith equation. This study aims to further develop the SEBAL model by employing a more rigorous parameterization scheme including the estimation of uncertainty associated with parameter and model selection in regression model. Finally, the proposed model is compared with the existing approaches and comprehensive discussion is then provided.

  • PDF

An intercomparison of two satellite data-based evapotranspiration approaches (인공위성 데이터 기반의 두 공간 증발산 산정 모형 비교 분석)

  • Sur, Chan-Yang;Choi, Min-Ha
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.471-479
    • /
    • 2011
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a hydrological factor that has an important role in water cycle. However, there is a limitation to understand it due to heterogeneity of land cover and vegetation. In this study, Mapping EvapoTRanspiration with Internalized Calibration (METRIC) model, one of the energy balance models, and MODerate resolution Imaging Spectroradiometer (MODIS) satellite based well-known Penman-Monteith algorithm were compared. Two ET maps were categorized and compared by land cover classification. The results represented overall applicability of the two models with the highest correlation coefficients in needleleaf and broadleaf forests. This study will be useful to estimate remote sensing based ET maps with high resolution and to figure out spatio-temporal variability and seasonal changes.

Seasonal effect on hydrological models parameters and performance

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.326-326
    • /
    • 2018
  • The study will assess the seasonal effect of hydrological models on performance and parameters for streamflow simulation. TPHM, GR4J, CAT, and TANK-SM hydrological models will be applied for simulating streamflow in ten small and large watersheds located in South Korea. The readily available hydrometeorological data will be applied as an input to the four hydrological models and the potential evapotranspiration will be computed using the Penman-Monteith equation. The SCE-UA algorithm implemented in PEST will be used to calibrate the models considering similar objective functions bedside the calibration will be renewed to capture the seasonal effects on the model performance and parameters. The seasonal effects on the model performance and parameters will be presented after assessing the four hydrologic models results. The conventional approach and season-based results will be evaluated for each model in the tested watersheds and a conclusion will be made based on the finding of the results.

  • PDF

Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration (기준 일증발산량 산정을 위한 인공신경망 모델과 경험모델의 적용 및 비교)

  • Choi, Yonghun;Kim, Minyoung;O'Shaughnessy, Susan;Jeon, Jonggil;Kim, Youngjin;Song, Weon Jung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.43-54
    • /
    • 2018
  • The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.