• 제목/요약/키워드: Penetrator Characteristic

검색결과 2건 처리시간 0.02초

원통형 및 육면체 텅스텐 관통자의 기하형상비에 따른 관통 특성 (Penetration Characteristic of Cylindrical and Cubic Tungsten Penetrator due to Geometrical Shape Ratio)

  • 이상원;이영신;조종현;배용운
    • 한국CDE학회논문집
    • /
    • 제18권5호
    • /
    • pp.367-373
    • /
    • 2013
  • In this study, the penetration characteristic from the cubic and cylindrical penetrator consisting of tungsten material with the velocity of 2,300 m/s is evaluated and the penetration possibility into the target is confirmed. The design of shape and size of penetrator is directly related to space and weight of the warhead. AUTODYN-3D simulation is used to study the penetration effect of penetrator. The purpose of numerical analysis is to verify the penetration characteristic with various L/D penetrator. The penetration performance of penetrator with identical weight due to the shape is also confirmed. The cylindrical and cubic penetrator has enough penetration energy on constant target body. Because the possibility of 2'nd penetration is important factor after 1'st penetration into target body, residual velocity of residual mass must be existed as much as possible. As geometrical shape ratio increases, penetration performance is confirmed to improve.

EFP 관통자 특성과 비행 안정성에 대한 연구 (Research on the Penetrator Characteristics and Flight Stability of Explosively Formed Penetrator)

  • 이영선
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.355-362
    • /
    • 2020
  • EFP composed of explosive, charge and liner generally penetrates standoff a target by Monroe effect. Its performance highly depends on penetrator characteristics and flight stability. Penetration ability can be dramatically reduced when the penetrator reaches the target with AOA, even if the penetrator has high kinetic energy and L/D ratio. Therefore, it is important to research not only penetrator characteristics and but also flight stability. In this work, the effect of liner shape on penetrator characteristics was examined using free flight test and numerical tools. It was found that tip velocity of penetrator was increased with decreasing liner thickness. It was also found that thicker liner had higher static margin leading to better flight status.