• Title/Summary/Keyword: Penetration equation

Search Result 213, Processing Time 0.023 seconds

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

Modification of Thin Film Friction and Wear Models with Effective Hardness

  • Kim, Chang-Lae;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.320-323
    • /
    • 2020
  • Thin film coatings are commonly exploited to minimize wear and optimize the frictional behavior of various precision mechanical systems. The enhancement of thin film durability is directly related to the performance maximization of the system. Therefore, a fine approach to analyze the thin film wear behavior is required. Archard's equation is a representative and well-developed law that defines the wear coefficient, which is the probability of creating wear particles. A ploughing model is a commonly used model to determine the friction force during the abrasive contact. The equations demonstrate that the friction force and wear coefficient are inversely proportional to the hardness of the material. In this study, Archard's equation and ploughing models are modified with an effective hardness to minimize the gap between the experimental and numerical results. It is noted that the effective hardness is the hardness variation with respect to the penetration depth owing to the substrate effect. The nanoindentation method is utilized to characterize the effective hardness of Cu film. The wear coefficient value considering the effective hardness is more than three times higher than that without considering the effective hardness. The friction force predicted with the effective hardness agreed better with the results obtained directly from the friction force detecting sensor. This outcome is expected to improve the accuracy of friction and wear amount predictions.

Evaluation of Shear Load-transfer Barrette Pile in Sandy Soils (사질지반에서의 바렛말뚝의 주면하중전이 거동 평가)

  • Lee, Sang-Rae;Park, Seong-Wan;Lim, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.5-13
    • /
    • 2010
  • Recently, the use of barrette pile has remarkably increased for high-rise building and bridge foundations. However, relatively few studies have been made for analyzing barrette pile behavior by considering shear load transfer on interface between pile and soils. Therefore, in this paper, an empirically derived equation is proposed. This equation correlates the load transfer curve of barrette piles with the N value from field standard penetration test based on full-scale load tests. The results from all procedures are presented. In addition, the effect of interface on pile-soil is evaluated using 3-D non-linear finite element method and verified with the field data.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Spatial Variability of Soil Moisture Content, Soil Penetration Resistance and Crop Yield on the Leveled Upland in the Reclaimed Highland (고령지 개간지 밭의 토양수분과 경도 및 작물수량의 공간변이성)

  • Park, Chol-Soo;Yang, Su-Chan;Lee, Gye-jun;Lee, Jeong-Tae;Kim, Hak-Min;Park, Sang-Hoo;Kim, Dae-Hoon;Jung, Ah-Yeong;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • Spatial variability and distribution map of soil properties and the relationships between soil properties and crop yields are not well characterized in agroecosystems that have been land leveled to facilitate more cultivation of the new reclaimed sloping highland. Potato, onion, carrot, Chinese cabbage and radish were grown on the coarse sandy loam soil in 2004. Soil moisture content, soil penetration resistance and crop yield were sampled in the $10m{\times}50m$ field consisted of five plots. Sampling sites of each cultivation plot were 33 for the soil moisture, 11 for the soil penetration and 33 for the crop yield. The results of semivariance analysis, most of models were shown spherical equation. The significant ranges of each spatial variability model for the soil moisture, soil penetration and crop yield were broad as 33-35 meters in the potato cultivation plot, and that in the Chinese cabbage cultivation plot was narrow as 5-6 meters. The coefficient of variances (C.V.) of moisture, penetration and yield were various from 14 to 59 percents in five cultivation plots. The highest C.V. of potato yield was 59 percents, and that of the radish cultivation plot was as low as 14 percents. The required sample numbers for the determination of soil moisture content, soil penetration resistance and crop yield with error 10% at 0.05 significant level were ranged 8-40 for soil moisture, 7-25 for soil penetration and 424-4,678 for crop yield. The variogram and distribution map by kriging described field characteristics well so that the spatial variability would be useful for soil management for better efficiency and precision agriculture in the reclaimed highland.

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Development of an Empirical Equation for Estimating Lond Transfer Curve for Micropile in Weathered Soils (풍화지반에 근입된 마이크로파일의 하중전이곡선 추정을 위한 경험식 개발)

  • Park, Seong-Wan;Cho, Kook-Hwan;Roh, Kang-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.5-11
    • /
    • 2007
  • Micropiles have been used for underpinning or rehabilitation of existing foundations, and direct structural support system as well. However, relatively few studies have been done on the load-transfer mechanism of micropile systems in Korea. In addition to that, only the limited information is available for estimating the side friction values on micropiles installed in weathered soils. In this study, a full-scale test on an instrumented micropile is performed in order to establish the load-transfer curves based on a hyperbolic function. Then, an empirically derived equation that correlates the load-transfer curve of micropiles with the N values from field standard penetration tests is proposed. The results from all procedures are presented in this paper. Finally, back analysis using a finite difference method and the published field data are adopted for examination of a developed skin friction equation of micropile in weathered soils respectively.

Reduction Characteristics of Electromagnetic Penetration through Narrow Slots in Conducting Screen

  • Park Eun-Jung;Kim Ki-Chai
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.130-134
    • /
    • 2006
  • This paper presents the reduction characteristics of penetrated electromagnetic fields through a narrow slot in a planar conducting screen of infinite extent. When a plane wave is excited to the narrow slot, the aperture electric field is controlled by the parallel wire or parallel plate connected on the slot. The magnitude of penetrated electromagnetic fields through a narrow slot is controlled by electric field distributions on the slot. An integral equation for the aperture electric field on narrow slots is derived and solved by applying Galerkin's method of moments. The results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the parallel wire or parallel plate on the slot.

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part I: Migration Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.105-108
    • /
    • 2010
  • In order to determine the effect of the use of limestone sand on chloride ion ingress in mortar, specimens were cast with two different sands: siliceous sand (used as reference) and limestone crushed sand (used for this study). To compare and assess the resistance of this mortar to chloride penetration, two different diffusions tests were employed: slow migration and rapid migration (AASHTO test). In this study, calculation of the effective diffusion coefficient is proposed using a model based on Nernst. Planck equation. The diffusion coefficients from each sample were compared. The results for all tests show that the diffusion coefficients for siliceous sand mortar are larger than those obtained with limestone sand. It appears also that the diffusion coefficient varies as a function of the W/C ratio.

EDUCATION OF ELECTROMAGNETIC PENETRATION THROUGH NARROW SLOTS IN CONDUCTING SCREEN BY PARALLEL PLATE LOADING (평행평판 장하에 의한 슬릿 침투 전자파의 저감 특성)

  • Park, Eun-Jung;Ju, Chang-Hyun;Kim, Ki-Chai
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.66-68
    • /
    • 2005
  • This paper presents the reduction characteristics of penetrated electromagnetic fields through a narrow slot aperture in a planar conducting screen of infinite extent. When a plane wave is excited to the narrow slot, the aperture electric field is controlled by the parallel plate connected on the slot. The magnitude of penetrated electromagnetic fields through a narrow slot is controlled by electric field distributions on the slot aperture. An integral equation for the aperture electric field on narrow slots is derived and solved by applying Galerkin's method of moments. The results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the parallel plate on the slot aperture.

  • PDF