• 제목/요약/키워드: Penetration and Break

검색결과 37건 처리시간 0.021초

표면크랙의 관통 및 파단 피로수명 예측 (Prediction of Penetration and Break Fatigue Life of Surface Crack)

  • 윤한용
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1446-1450
    • /
    • 1992
  • 본 연구에서는 윤, H. Okamura는 주어진 초기크랙으로부터 관통이전의 한계크 랙까지의 수명을 간단히 평가하는 수법을 제안했으며 또한, 파괴역학적 제인자의 수명 에 미치는 영향을 평가했다. 본 논문은 이러한 연구들의 연장으로서 상기 남등의 응 력 확대 계수 평가식을 이용하여 파단수명의 예측수법을 확립하고 파단수명에 미치는 파괴역학적 제인자의 영향을 밝히는데 그 목적을 두고 있다.

제트 질량 변수 조절에 의한 성형작약 관통성능 증대 연구 (A Study on the Improvement of Penetration Capability of a Shaped Charge by Controlling the Jet Mass Parameters)

  • 소병관
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.566-573
    • /
    • 2015
  • The most important factor for the penetration performance of shaped charge is the liner design. By designing the liner to have properties of both high jet tip velocity and long jet break-up time, the better penetration performance could be acquired. Usually it is very difficult to satisfy above two conditions simultaneously. In this study, the liner with the shape of ogive was developed to have relatively larger jet mass compared to the conventional trumpet liner. The designed shaped charge showed jet properties with high jet tip velocity and long jet break-up time by using ogive liner and wave shaper. A commercially available hydro-dynamic code AUTODYN-2D was used for numerical analysis of jet formation. The flash X-ray test and the static penetration test were conducted to verify the results of numerical analysis.

노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구 (The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

피로균열의 지연거동에 따른 수명예측 및 비파괴평가 (Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

인장 굽힘피로를 받는 부재의 피로수명과 균열관통 (Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress)

  • 남기우
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF

굽힘하중을 받는 배관의 파단전누설거동 및 균열개구변위 (Leak-Before-Break Behavior and Crack Opening Displacement in Piping Under Bending Load)

  • 남기우
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.725-730
    • /
    • 2010
  • 부정정계 배관의 두께 관통 후 파단전누설 거동과 균열개구변위는 정정계 배관과 비교하여 연구 하였다. 부정정 배관은 균열 발생으로 인한 최대 강도의 감소가 비교적 적었다. 부정정 배관계의 파단 전누설 거동은 정정계 배관보다 더 안전 하였다. 균열개구변위는 미관통균열을 가지는 배관에서 균열 관통 후 평가하기 위하여 제안된 소성힌지를 사용하여 평가하였다.

표면균열재의 피로균열 관통거동에 따른 어코스틱에미션 (Acoustic emission during fatigue crack penetration behavior of surface cracked plate)

  • 남기우;김선진;오세규;이건찬;오정환;이주석
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.29-38
    • /
    • 1997
  • Crack penetration behavior by fatigue crack propagation and measurements of AE before-and-after crack penetration were examined using SS41 steel plate. Experimental crack shape of SU type was in good agreement with calculated shape rather than S type. Crack propagation behavior on the front surface appears not to change markedly after penetration. However, crack growth on the back surface appears to accelerate as reported by author. As a crack propagates, AE occurred heavily just before penetration. Then, it decreases and crack is penetrating. A transition from plane strain to plane stress was observed by fractographic study. At this time, separation of fracture surface was shown which affects AE occurrence.

  • PDF

Characteristics of AE Signals from Fatigue Crack Propagation and Penetration of a Surface Crack in 6061 Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제4권1호
    • /
    • pp.44-50
    • /
    • 2001
  • Existing surface defects in structural members often act as sites of fatigue crack initiation, and if undetected, these cracks may grow through the thickness of the member, leading to catastrophic failure of the structure. Thus, in-service monitoring of fatigue cracks through reliable and effective nondestructive techniques is an important ingredient in the leak-before-break (LBB) design and safe operation of defects critical structures. An advanced, waveform-based, acoustic emission (AE) technique has been used in this paper to study the characteristics of the signals emanating from the initiation, growth and through-the -thickness penetration of surface fatigue crack in a 6061 aluminum plate. The goal of this experimental study is to determine whether the evolution of the fatigue crocks could be identified from the properties of the waveforms produced during the tests. The AE waveform signals detected at different stages of crack growth was found to have different temporal and spectral characteristics. The data analysis technique presented here can be applied to real-time monitoring of the initiation and propagation of fatigue cracks in structural components.

  • PDF

표면크랙의 관통 및 파단 피로수명의 확률분포 (Probabilistic Distribution of Penetration and Break Fatigue Life of Surface Crack)

  • 윤한용
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2495-2500
    • /
    • 1994
  • A method of prediction for the fatigue life of surface crack, that is, initial cracks grow and penetrate through the thickness, was presented in the previous study of the author. Effects of parameters such as the initial crack length, material factors, etc., for the life were discussed. In this paper, the probabilistic distribution of the life is calculated. Effects of the distribution of parameters for the distribution of life were also discussed.

흡기 가습에 의한 압축 착화엔진 실린더 내 디젤 연료 분무 특성 예측 (Prediction of Diesel Fuel Spray Characteristics in Compression Ignition Engine Cylinder by Intake Humidification)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제23권1호
    • /
    • pp.30-35
    • /
    • 2018
  • The objective of this study is to predict numerically the effect of intake humidification on the injected diesel fuel spray characteristics in a compression ignition engine. In this work, Wave model and Ducowicz model were applied as the break-up model and evaporation model, respectively. The amount of water vapor for the humidification was changed from 0% to 30% of injected fuel mass. The number of applied meshes was generated from 49,000 to 110,000. At the same time, the results of this work were compared in terms of spray tip penetration, SMD and equivalence ratio distributions. It was found that the cylinder temperature and cylinder pressure were decreased with increasing water vapor mass by vaporization latent heat and specific heat, however, the difference was very small. So, the spray tip penetration was not different by water vapor mass. Also, higher equivalence ratio distributions were observed with increasing water vapor mass by the improvement of fuel atomization.