• Title/Summary/Keyword: Penetration

Search Result 5,553, Processing Time 0.03 seconds

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

An Analysis of Flat DMT Penetration Based on a Large strain Formulation (대변형을 고려한 flat DMT의 3차원 관입 해석)

  • Byeon, Wi-Yong;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.67-76
    • /
    • 2007
  • Flat DMT penetration was analyzed using a finite element model based on a large strain formulation. The ABAQUS/Explicit, a commercial finite element method, was used to study the flat DMT penetration in soils. Then, because the very large mesh distortion occurred due to the penetration of flat DMT, the adaptive meshing technique was utilized to maintain a high quality mesh configuration. The undrained shear strength obtained from the flat DMT is estimated using only the horizontal stress index ($K_{D}$) and so it became necessary to examine using the analysis results obtained from the penetration of the flat DMT. Analysis results show that in normally consolidated region of $K_{D}=2$, the results obtained from the correlations proposed by Marchetti show good agreement with those estimated from the finite element method. The present analysis also shows that in overconsolidated region of $K_{D}>2$, the results obtained from the relationships proposed by Kamei and Iwasaki show good agreement with those provided by the penetration analysis.

Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles (분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화)

  • Yongjin Jung;Jinyoung Jang;Choongsik Bae
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

THE EFFECT OF PRIMER ON PENETRATION OF SEALANT (치면열구전색제의 열구 침투에 primer의 효과)

  • Jeong, Hye-Seon;Lee, Jae-Ho;Choi, Hyung-Jun;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.416-426
    • /
    • 1999
  • The objective of this study is to confirm the effect of dentine bonding primer application on penetration of sealant. Extracted permanent molars were used to compare penetration success rate of control group (sealant application only) and experimental groups (sealant application after applying the primers of $Scotchbond^{TM}$ Multi-Purpose system and $All-Bond^{(R)}$ 2 system). The following results were obtained: 1. The experimental groups using the primers showed increased sealant penetration success rate to the base of fissure when compared to control group but there was no statistically significant differences(p>0.05). 2. The depth, width and 'depth/width' value of fissure had statistically significant effect on sealant penetration success rate(p<0.05). 3. The penetration success rate decreased about 0.9 times as the depth of fissure increased every $25{\mu}m$, and increased about 1.1 times as the width of the fissure orifice increased every $25{\mu}m$ and decreased about 0.6 times as the 'depth/width' value increased every 1. From the above results, it can be concluded that assure morphology had a great effect on sealant penetration and for better penetration, use of dentine bonding primer can be helpful but it needs more study in clinical bases.

  • PDF

A STUDY ON THE MICROLEAKAGE OF COMPOSITE RESIN AND GLASS IONOMER CEMENT WITH VARYING FILLING METHODS (수복방법에 따른 복합레진 및 글라스아이오노머 시멘트의 변연부 미세누출에 관한 연구)

  • Hwang, Ho-Keel;Park, Joo-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.174-186
    • /
    • 1996
  • The purpose of this study was to evaluate the adaptability to tooth structure of composite resin and glass ionomer cement according to filling methods. In this study. two class V cavities were prepared on the buccal and lingual surface of each tooth of forty extracted human premolars. and they were randomly assigned into 4 groups with 10 teeth. The cavities of each group were filled with the CLEARFIL FII self curing resin(Control Group), Z-100 light curing resin (Group 1). $Vitremer^{TM}$ light curing glass ionomer cement(Group 2) and Z-100 light curing resin over the $Vitremer^{TM}$ liner(Group 3). The specimens underwent temperature changed from $5^{\circ}C$ to $55^{\circ}C$ five hundred times. After thermocycling. specimens were immersed in 2% methylene blue solution and stored in 100% relative humidity at $37^{\circ}C$ for 24 hours. And then. the specimens sectioned buccolingually. Degree of dye penetration at tooth-restoration interfaces were examined by Tool maker's microscope(x 200) and Image analyzer. The results were as follows : 1. On the occlusal margin. among the experimental groups. the group 2 showed the highest dye penetration($2.40{\pm}0.68$) and the group 3 showed the lowest dye penetration($1.15{\pm}0.37$). There was significant difference among the experimental groups(p<0.001). 2. On the gingival margin, among the experimental groups, the group 1 showed the highest dye penetration($3.30{\pm}0.57$) and the group 2 showed the lowest dye penetration($1.65{\pm}0.49$). There was significant difference among the experimental groups(p>0.001). 3. About total degree of dye penetration, the group 1 showed the highest dye penetration($2.25{\pm}1.17$) and the group 3 showed the lowest dye penetration ($1.43{\pm}0.55$). There was significant difference among the experimental groups(p<0.001). 4. The sum of dye penetration at occlusal margin was less than gingival margin. There was significant difference between occlusal margin and gingival margin (p<0.001). The results showed that differences were more pronounced at the gingival margin. Composite restorations inserted over the glass-ionomer liner demonstrated significantly less leakage than single restoration that used composite resin or glass-ionomer cement.

  • PDF

A Study on the Correlation between Standard Penetration Resistance Value and Static Cone Penetration Resistance Value of the Soft Ground Subsurface of Yongdong Area (표준관입저항치와 정적콘관입저항치의 상관성에 관한 연구 - 영동지역의 연약지반을 중심으로 -)

  • Kim, Jinam;Park, Heunggyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.13-20
    • /
    • 2006
  • We have conducted standard penetration tests and static cone penetration tests that are widely used the land base examination on the soft ground subsurface of Yongdong area, and examined the correlation between them. We have also made a comparative analysis of the correlation between the indoor tests on the materials collected on the site and on-the-spot penetration tests. The results are as follows : The relationship between Standard Penetration Test N-value and Dutch Cone Tset show $Q_c=1.93N+0.29$ for organic soil, $Q_c=2.19N+0.20$ for clay, $Q_c=2.34N+1.06$ for silt, $Q_c=3.02N+0.54$ for silty sand, and $Q_c=3.47N+0.46$ for sand. In this case of sand $Q_c/N$ increases when the soil particles are larger. The relationship between standard penetration test N-value and Unconfined Compression Strength $q_u$ show $q_u=0.11N+0.03$ for organic soil, $q_u=0.11N+0.25$ for clay, and $q_u=0.18N-0.03$ for silt.

  • PDF

Effect of Treatment of In Vitro Matured Pig Oocytes with Calcium Ionophore on Monospermic Penetration In Vitro

  • Song, Xue-Xiong;Zhao, Xian-Mian;Han, Yi-Bing;Niwa, Koji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • The present study examined whether treatment of in vitro matured pig oocytes with calcium ionophore (A23187) could prevent polyspermic penetration in vitro. When oocytes cultured for maturation for 33, 36 or 44 h were subsequently treated with $50{\mu}M$ A23187 in medium with fetal calf serum (FCS) for 1, 2 and 3 h and then cultured for 12 h without spermatozoa, virtually no activation occurred. In the absence of FCS, however, 31-42, 45-49 and 56-64% of oocytes were activated, respectively. When oocytes treated with $50 {\mu}M$ A23187 in medium with FCS for 3 h were inseminated in vitro, the penetration rates (14-57%) were lower (p<0.01) with a higher (p<0.01) incidence (35-67%) of monospermy compared with untreated oocytes (69-80% penetration and 15-17% monospermy). However, sperm penetration was completely blocked in all oocytes treated with A23187 in the absence of FCS. When oocytes matured for 33 h were treated with different concentrations of A23187 for 3 h and inseminated in vitro, the penetration rate did not change but there was an increased incidence (p<0.05) of monospermy at $10-20{\mu}M$ and $2.5-5{\mu}M$ A23187 in the presence and absence of FCS, respectively, compared with at $0{\mu}M$ A23187. With these lower concentrations of A23187, treatment of oocytes for at least 60 and 30 min in the presence and absence of FCS, respectively, was required to increase the incidence of monospermy without reducing penetration rate. These results indicate that a high concentration ($50{\mu}M$) of A23187 in medium without FCS, but not in medium with FCS, stimulated in vitro matured pig oocytes to induce parthenogenetic activation and a complete block to sperm penetration in vitro. However, treatment of oocytes with lower concentrations of A23187 ( $10-20{\mu}M$ and $2.5-5{\mu}M$) both in the presence and absence of FCS maintained sperm penetration in vitro and increased the incidence of monospermy.

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System (커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성)

  • Park, Su-Han;Suh, Hyun-Kyu;Kim, Hyung-Jun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.