• Title/Summary/Keyword: Penetrated Electric Field

Search Result 22, Processing Time 0.015 seconds

Filtration Characteristics of Metal Foam Filters for DPF Combined with Electrostatic Precipitation Mechanism (전기집진 기제를 조합시킨 DPF용 금속 폼 필터의 여과 특성)

  • Park, Seok-Joo;Lee, Dong-Geun;Kim, Jin-Hyun;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • Filtration studies, using simulated test nanoparticles or diesel nanoparticles, have been performed about Inconel foam filters for DPF combined with electrostatic precipitation. The simulated test particles were synthesized by laser ablation in the nitrogen atmosphere at the standard condition. The diesel particles were exhausted from the diesel engine driven on the condition of idle or load mode. Filtration efficiency of the metal foam filter is very low because most of particles are penetrated through the large pores of filter. However, the efficiency was considerably improved by applying the electric field to the filter and/or charging the nanoparticles. Nevertheless, the pressure drop of filter hardly increased because the filter-pores were not clogged by deposited particles and kept open.

A Study on the Color Granite Fabrication by Bias Enhancement Method (바이어스 인가 방식에 의한 컬러 화강석 제조에 관한 연구)

  • Park, Jong Kug;Shin, Hong-Jik;Choi, Won Seok;Han, Jae Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.247-249
    • /
    • 2016
  • In this study, we investigated the color change of the normal light gray granite as the high value color granite. By coating the metal catalyst liquid on the surface of granite stone, the metal particles were penetrated into the granite and the color of granite was changed permanently through the annealing treatment. To increase penetration depth into the granite, we used DC (direct current) bias. Two kinds of bias were used such as DC bias and pulse DC bias. And the penetration time was changed as 30 and 60 min. In all cases, the color granite were successfully obtained. Regardless of the catalyst reaction time, the penetration depth was increased by using the bias treatment. We obtained a penetration depth of 21 mm with the DC pulse bias during 60 min.