• Title/Summary/Keyword: Pencil lead

Search Result 34, Processing Time 0.024 seconds

A Comparative Study of Item Difficulty Hierarchy of Self-Reported Activity Measure Versus Metabolic Equivalent of Tasks

  • Choi, Bong-Sam
    • Physical Therapy Korea
    • /
    • v.20 no.3
    • /
    • pp.89-99
    • /
    • 2013
  • The purposes of this study were: 1) to show the item difficulty hierarchy of walking/moving construct of the International Classification of Functioning, Disability and Health-Activity Measure (ICF-AM), 2) to evaluate the item-level psychometrics for model fit, 3) to describe the relevant physical activity defined by level of activity intensity expressed as Metabolic Equivalent of Tasks (MET), and 4) to explore what extent the empirical activity hierarchy of the ICF-AM is linked to the conceptual model based on the level of energy expenditure described as MET. One hundred and eight participants with lower extremity impairments were examined for the present study. A newly created activity measure, the ICF-AM using an item response theory (IRT) model and computer adaptive testing (CAT) method, has a construct on walking/moving construct. Based on the ICF category of walking and moving, the instrument comprised items corresponding to: walking short distances, walking long distances, walking on different surfaces, walking around objects, climbing, and running. The item difficulty hierarchy was created using Winstep software for 20 items. The Rasch analyses (1-parameter IRT model) were performed on participants with lower extremity injuries who completed the paper and pencil version of walking/moving construct of the ICF-AM. The classification of physical activity can also be performed by the use of METs that is often preferred to determine the level of physical activity. The empirical item hierarchy of walking, climbing, running activities of the ICF-AM instrument was similar to the conceptual activity hierarchy based on the METs. The empirically derived item difficulty hierarchy of the ICF-AM may be useful in developing MET-based activity measure questionnaires. In addition to convenience of applying items to questionnaires, implications of the finding could lead to the use of CAT method without sacrificing the objectivity of physiologic measures.

The Role of Spreadsheet in Teaching Function and Modeling Activity (함수 지도와 수학적 모델링 활동에서 스프레드시트의 활용)

  • Son, Hong-Chan;Lew, Hee-Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.4
    • /
    • pp.505-522
    • /
    • 2005
  • In this article we studied the role of spreadsheet in teaching function and modeling activity by some examples and students' activity performed by the six 10th graders. We especially focused the role of spreadsheet in understanding of various kinds of functions and the families of functions, and in the explanation of the given modeling problem situations. The functions of automatic copy, graphic and the cell reference of spreadsheet can be used to make students observe the causes and effects of changes of the various kind of mathematical representations of functions such as algebraic formulas, tables and graphs. Especially those functions give students a chance to identify family of functions by changing the parameters and this may lead them to the discovery of mathematical facts. In modeling activities they play a key role in the stages of the analysis of the model, explanation of the results of model and conjecture of the real world situations. As well as they make students find the rules underlying in the real world by making spreadsheet as simulation environments, which are almost impossible to make in paper and pencil environments, and give them a chance to justify their findings using mathematics.

  • PDF

A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor (부착형 고분자 압전센서를 이용한 탄성파 검출 연구)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Kueon, Jae-Hwa;Lee, Young-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.268-274
    • /
    • 2004
  • Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor.

Elastic Wave Detection using Fiber Optic FBG Sensor (광섬유 FBG 센서를 이용한 탄성파 검출)

  • Seo, Dae-Cheol;Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Suk;Lee, Jung-Ryul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect or monitor preexisting defects and leaks in the vessel structures. A Bragg grating based acoustic emission sensor system is developed. Various type of fiber Bragg grating sensor including the variable length of sensing part was fabricated and prototype sensor system was tested by using PZT pulser and pencil lead break sources. Two types of sensor attachment were used. First, the fiber Bragg grating sensor was attached fully to the surface using bonding agent. Second one is that one part of fiber was attached to the surface partly by bonding and the other part of fiber will be act as a cantilever. That is, the resonant frequency of the fiber Bragg grating sensor will depend on the length of sensing part. The final goal of the sensor system is to provide on-line monitoring of cracks or leaks in reactor vessel head penetration of nuclear power plants.

Improvement of Acoustic Emission Signal Processing Method and Source Location using Wavelet Transform (웨이블릿 변환을 이용한 음향방출 신호의 처리기법 개선 및 위치표정)

  • Kim, Dong-Hyun;Park, Il-Suh;Chung, Won-Yong;Park, Yong-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • The purpose of this thesis is to reduce of error for source location through acoustic emission(AE) signal, generated elastic wave from crack growth to leak for facility diagnosis. Especially, in order to overcome noise from original signal, this paper proposed enhancement of source location by using noise reduction based on wavelet transform. To evaluate actual performance in experiments, Pencil Lead Break is used crack signal source on the aluminum plate and drain valve of air compressor is used as substitute pressure vessel to generate leak signal. In signal processing, wavelet shrinkage and soft threshold are used to discriminate signal source and then source location techniques have been effectively used with group velocity using material property and time difference between sensor using cross correlation. Source location for crack and leak test have some difference, but the result show that improved 30% with a average length within 10.46mm in crack test and improved 2% compare with average filter in leak test when we applied wavelet transform.

  • PDF

Predictive model of fatigue crack detection in thick bridge steel structures with piezoelectric wafer active sensors

  • Gresil, M.;Yu, L.;Shen, Y.;Giurgiutiu, V.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.97-119
    • /
    • 2013
  • This paper presents numerical and experimental results on the use of guided waves for structural health monitoring (SHM) of crack growth during a fatigue test in a thick steel plate used for civil engineering application. Numerical simulation, analytical modeling, and experimental tests are used to prove that piezoelectric wafer active sensor (PWAS) can perform active SHM using guided wave pitch-catch method and passive SHM using acoustic emission (AE). AE simulation was performed with the multi-physic FEM (MP-FEM) approach. The MP-FEM approach permits that the output variables to be expressed directly in electric terms while the two-ways electromechanical conversion is done internally in the MP-FEM formulation. The AE event was simulated as a pulse of defined duration and amplitude. The electrical signal measured at a PWAS receiver was simulated. Experimental tests were performed with PWAS transducers acting as passive receivers of AE signals. An AE source was simulated using 0.5-mm pencil lead breaks. The PWAS transducers were able to pick up AE signal with good strength. Subsequently, PWAS transducers and traditional AE transducer were applied to a 12.7-mm CT specimen subjected to accelerated fatigue testing. Active sensing in pitch catch mode on the CT specimen was applied between the PWAS transducers pairs. Damage indexes were calculated and correlated with actual crack growth. The paper finishes with conclusions and suggestions for further work.

A Study on the P Wave Arrival Time Determination Algorithm of Acoustic Emission (AE) Suitable for P Waves with Low Signal-to-Noise Ratios (낮은 신호 대 잡음비 특성을 지닌 탄성파 신호에 적합한 P파 도달시간 결정 알고리즘 연구)

  • Lee, K.S.;Kim, J.S.;Lee, C.S.;Yoon, C.H.;Choi, J.W.
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.349-358
    • /
    • 2011
  • This paper introduces a new P wave arrival time determination algorithm of acoustic emission (AE) suitable to identify P waves with low signal-to-noise ratio generated in rock masses around the high-level radioactive waste disposal repositories. The algorithms adopted for this paper were amplitude threshold picker, Akaike Information Criterion (AIC), two step AIC, and Hinkley criterion. The elastic waves were generated by Pencil Lead Break test on a granite sample, then mixed with white noise to make it difficult to distinguish P wave artificially. The results obtained from amplitude threshold picker, AIC, and Hinkley criterion produced relatively large error due to the low signal-to-noise ratio. On the other hand, two step AIC algorithm provided the correct results regardless of white noise so that the accuracy of source localization was more improved and could be satisfied with the error range.

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF

Usefulness of Ultrasonography in Diagnosis of Small Foreign Bodies (체내 소형 이물질 진단에서 초음파 검사의 유용성)

  • Kim, Chol Jin;Chung, Yang Guk;Park, Tae Yong
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.5 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Purpose: The purpose of this study is to evaluate the usefulness of ultrasonographic examination for diagnosis and removal of small sized foreign bodies, which invaded extremity but difficulty to find on physical examination and/or plane radiographs. Materials and Methods: Since March, 2009 to February, 2012, we performed preoperatively ultrasonography and operation in 9 cases of foreign bodies of hand or foot. Mean symptom duration periods was 32 months. The location were fingers in 5, palms in 2, hand dorsum in 1, heel in 1 case. In 2 cases, foreign bodies were seen on plane radiographs. In the remaining 7 cases, foreign bodies could be diagnosed by ultrasonography only. Using high resolution stick probe, we performed evaluation on size, location, character of foreign bodies and compared preoperative ultrasonographic findings to intraoperative ones. Results: The site of foreign bodies in preoperative ultrasonography corresponded well with intraoperative findings. Foreign bodies were glass particles in 5, plant thorns in 4, pencil lead in 1. Mean size was 3.9 mm (2~7 mm). Conclusion: Ultrasonography is usefull evaluation tool for diagnosis and treatment in whom residual foreign bodies were suspected.

  • PDF

An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students (수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석)

  • Kim, Ji-Young;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • The purpose of this research is to analyze geometrical level and the justification process in the proofs of construction by mathematically gifted elementary students. Justification is one of crucial aspect in geometry learning. However, justification is considered as a difficult domain in geometry due to overemphasizing deductive justification. Therefore, researchers used construction with which the students could reveal their justification processes. We also investigated geometrical thought of the mathematically gifted students based on van Hieles's Theory. We analyzed intellectual of the justification process in geometric construction by the mathematically gifted students. 18 mathematically gifted students showed their justification processes when they were explaining their mathematical reasoning in construction. Also, students used the GSP program in some lessons and at home and tested students' geometric levels using the van Hieles's theory. However, we used pencil and paper worksheets for the analyses. The findings show that the levels of van Hieles's geometric thinking of the most gifted students were on from 2 to 3. In the process of justification, they used cut and paste strategies and also used concrete numbers and recalled the previous learning experience. Most of them did not show original ideas of justification during their proofs. We need to use a more sophisticative tasks and approaches so that we can lead gifted students to produce a more creative thinking.