• Title/Summary/Keyword: Peening

Search Result 261, Processing Time 0.028 seconds

Finite Element Analysis of Shot Peening Effected by Multiple Impacts (다중 충돌의 영향을 고려한 쇼트피닝의 유한요소해석)

  • Kim, Tae-Joon;Kim, Nak-Soo;Park, Soon-Cheol;Jeong, Won-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2656-2661
    • /
    • 2002
  • Multiple impact models to examine the effect of stress interference are proposed and investigated. The single shot model analysis, which used various shot ball conditions, was carried out to compare with multiple impacts analysis. Then the multiple impact analysis were performed to predict the effect of the shot ball distances. The results showed that the stress interference in the multiple impact model significantly reduced the maximum value of the compressive residual stresses. The residual stress profiles were strongly effected by the shot ball distances. The multiple impact model can simulate a realistic shot peening process rather than a single shot model does. It is concluded that the proposed model predicts the real process more accurately.

2-Step Shot Peening Process for the Improvement of Fatigue Crack Growth Properties (균열 특성 개선을 위한 2단 쇼트피닝 가공)

  • Lee, Seoung-Ho;Shim, Dong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.67-72
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, crack growth tests are conducted on spring steel and shot peened specimens. And then the residual stresses and fractographs are examined. The crack growth equation that can describe the whole crack growth behavior is used to evaluate the experiment results. The results show that fatigue crack glows slowly in the shot peened specimen than in the unpeened. And in the case of the 2-step shot peened specimen the initial stress intensity factor range and the fracture toughness is higher than the unpeened specimen due to the compressive residual stress. Fractographs show that the compressive residual stress of the surface suppress the fatigue crack opening and consequently slow crack growth rates.

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • 박경동;정재욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.58-64
    • /
    • 2004
  • The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, and -10$0^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. There is a difference between shot peened specimen and unpeened specimen. Fatigue crack growth rate of shot peened specimen was lower than that of unpeened specimen. Shot peening is improve the resistance of crack growth by fatigue that make a compressive residual stress on surface. That is the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation. Temperature goes down, fatigue crack growth rate decreased.

FEM Analysis of Effect of Shot Peening for Stress Corrosion Cracking at Welded Part (용접부 응력부식균열 방지를 위한 쇼트피닝 효과의 유한요소 해석)

  • NAM KI-Woo;AHN SEOK-WHAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.239-241
    • /
    • 2004
  • Stress intensity factor of semi-circular crack front was calculated by FEM, and also allowable crack size which doesn‘t break out the fracture by SCC in residual stress field of STS materials. Allowable crack size was increased with compressive residual stress provided by shot peening on material surface, and with magnitude of compressive residual stress for depth direction.

  • PDF

Evaluation of Corrosion Fatigue Strength of the Automobile's Coil Spring;Effect of Residual Stress by Shot Peening (승용차 코일 스프링의 부식피로강도 평가(II);쇼트피닝에 의한 잔류응력의 영향)

  • Lee, Gyou-Young;Bae, Dong-Ho;Park, Sun-Cheol;Jung, Won-Wook
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.102-107
    • /
    • 2004
  • Suspension part should have enough endurance during its lifetime to protect passenger. Therefore, the coil spring is one of the major suspension part of an automobile. Corrosion fatigue strength of the coil spring depends on many factors including mechanical and environmental properties. In this paper, residual stresses by shot peening was analyzed using finite element analysis and evaluated its effect on corrosion fatigue strength.

  • PDF

A Study of Shot peened Spring Steel for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 쇼트피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Keyoung-Dong;Son, Myung-Koon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.347-353
    • /
    • 2002
  • The compressive residual stress, which is induced by shot peening process, seems to be an important factor of increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue characteristic study of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Effect of Shot-peening on Fatigue Crack Growth (균열진전에 대한 쇼트피닝 효과)

  • SHIM DONG-SUK;LEE SEUNG-HO;LEE MYUNG-HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.91-95
    • /
    • 2004
  • In this study, to investigate the effects of shot peening on crack growth behavior, crack growth tests are conducted on spring steels and shot peened cracks. The probabilistic crack growth equation, which can represemt the sigmoidal crack growth behavior as recently reported by Kim and Shim, is used to evaluate the experimental results. The results show that fatigue cracks grows slower in the shot peened specimen than in the unpeened and, due to the compressive residual stress occurring on the specimen surface. In the case of the shot peened specimen, the initial stress intensity factor range and the fracture toughness is higher than the non-peened specimen because the compressive residual stress affects crack growth and fracture of the specimen.

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

Distribution Characteristics of Residual Compressive Stresses Induced by Shot-peening in the Aircraft Structural Material (항공기 구조용 재료의 쇼트피닝에 의한 압축 잔류응력의 분포 특성)

  • 이환우;박영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.149-157
    • /
    • 2004
  • Residual stresses can have a significant influence on the fatigue lives of structural engineering components. For the accurate assessment of fatigue lifetimes a detailed knowledge of the residual stress profile is required. Significant advances have been made in recent years fur obtaining accurate and reliable determinations of residual stress distributions. These include both experimental and numerical methods. The purpose of this study is to simulate peening process with the help of the finite element method in order to predict the magnitude and distribution of the residual stresses in accordance with the parameters, which are, e.g. shot velocity, shot diameter, shot impact angle, shot shape, distance between two impinging shots, and material parameters.