• Title/Summary/Keyword: Peel adhesion strength

Search Result 181, Processing Time 0.026 seconds

Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films (Cu-Cr 합금박막의 필 접착력과 소성변형)

  • 이태곤;임준홍;김영호
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.

Measurement of Adhesion Strength for Ceramic Sheet (세라믹 박판의 접착 강도 측정)

  • Huh, Y.H.;Kim, D.I.;Kim, D.J.;Lee, K.;Kim, D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • Adhesion strength of single layer ceramic capacitor sheet was measured using a peel testing system developed in this study. The peel test specimens with various dimensions were prepared from the ceramic sheet cast on the PET film. In peel test, the sheet specimen was adhered on the glass jig floating on the liquid media, which was designed to minimize the friction, and the specimen was then pulled up by micro-actuator. During the separation of the sheet from the PET film, peel force was measured. To normalize the testing condition, 3 different widths of the specimen were selected: 5, 10 and 20 mm. was used Furthermore, testing speed effect was investigated in this study. From the resullts using various testing conditions, the standard method for the peel strength testing may be suggested. Based on the testing condition, effect of peel angle on the strength was experimentally examined. It was found that the adhesive strength for the ceramic sheet is nearly identical, irrespective of the specimen width ranged from 5 to 20 mm, while the adhesive strength was increased with increasing testing speed. Furthermore, the strength was shown to be dependent on the peel angle.

  • PDF

A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film (이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구)

  • Shin Youn-Hak;Kim Myung-Han;Choi Jae-Ha
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

THIN FILM ADHESION IN Cu/Cr/POLYIMIDE AND Cu/Cu-Cr/POLYIMIDE SYSTEMS

  • Joh, Cheol-Ho;Kim, Young-Ho;Oh, Tae-Sung;Park, Ik-Sung;Yu, Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.379-385
    • /
    • 1996
  • Adhesion of Cu/Cr and Cu/$Cu_xCr_{1-x}$ thin films onto polyimide substrates has been studied. For an adhesion layer, Cr or Cu-Cr alloy films were deposited onto polyimide using DC magnetron sputtering machine. Then Cu was sputter-deposited and finally, Cu was electroplated. Adhesion was evaluated using $90^{\circ}C$ peel test or T-peel test. Plastic deformation of the peeled metal layer was qualitatively measured using XRD technique. It is confirmed that high interfacial fracture energy and large plastic deformation are important to enhance the peel adhesion strength. High peel strength is obtained when the interface is strongly bonded. More ductile film has higher peel strength. In Cu-Cr alloy films, opposite effects of the Cr addition in the alloy film on the peel strength are operative: a beneficial effect of strong interfacial bonding and a negative effect of smaller plastic deformation.

  • PDF

A Study on the Improvement of Adhesion according to the Surface Modification of Cu/Polyimide Films by ion Beam Irradiation (이온빔에 의한 Cu/Polyimide 표면개질에 따른 접착력향상에 관한 연구)

  • Shin Youn-Hak;Chu Jun-Sick;Lee Seoung-Woo;Jung Chan-Hoi;Kim Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.42-46
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer sufaces by ion beam irradiation and rf plasma are commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $Ar^+$ ion beam irradiation pretreatment conditions. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the $90^{\circ}$ peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $Ar^+$ ion beam irradiation energy at the fixed metal-layer thickness.

Adhesion between Cu-18wt% Cr Alloy Film and Polyimide : Effect of Heat Treatment (Cu-18wt% Cr 합금박막과 폴리이미드사이의 접착력 : 열처리 영향)

  • 임준홍;김영호;한승희
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.327-333
    • /
    • 1993
  • The effect of heat treatment on the adhesion between Cu-18wt% Cr film and polyimide has been studied by using T-peel test, AES, and XRD. Cu-18wt% Cr alloy and pure Cu films were sputter deposited onto pol-yimide. Cu was electroplated before and after heat treatment at $400^{\circ}C$ for 0.5 hr and 2 hrs respectively. The adhesion of metal film onto polyimide was considerably good before heat treatment, but heat treatment re-duced the peel adhesion strength in all specimens. The reduction in adhesion in adhesion strength values in the specimens which were plated after heat treatment was mainly due to Cr-O rich pahse formed in the metal/polyimide in-terface. In the specimens which were heat treated after plating, the enhanced ductility in the metal films con-tributes the peel adhesion strength by increasing the amount of deformation in metal strips.

  • PDF

Covulcanization and Ozone resistance for Unsaturated and Saturated Rubbers (불포화 고무와 포화 고무의 공가류 및 내오존성)

  • Lim, Won-Woo;Jung, Il-Taek;Han, Min-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.32-38
    • /
    • 2001
  • Effects of the ratio of rubber composition on covulcanization and ozone resistance were studied in this study. Specimens used in this study were rubber compounds(specimen-A) blended with various ratio of NR, SBR, BR, IIR, and EPDM, unsaturated rubber compounds(specimen-B) with NR/BR/SBR, and saturated rubber compounds(specimen-C) with NR/IIR/EPDM. PAD adhesion specimen was prepared from vulcanizing specimen-A and B, and specimen-A and C, respectively. Using same adhesion specimen, peel strength was measured and tested ozone resistance. In specimen-A, peel strength was higher with increasing NR ratio for NR and BR contained blends. In other specimen-A containing NR and SBR, the peel strength was also increased with increasing SBR ratio. NR/BR/IIR/EPDM rubber compounds had also better adhesion property than NR/SBR/IIR/EPDM compounds. As more unsaturated rubber was blended, the peel strength was higher but ozone resistance was worse. Optimum ratio of unsaturated and saturated rubbers for the peel strength and ozone resistance was 60/40.

  • PDF

The effects of plasma treatment of polyimide surface on the adhesion of chromium/polyimide (크롬/폴리이미드의 접착력에 미치는 폴리이미드 표면의 플라즈마 처리의 효과)

  • Chung, Tae-Gyeong;Kim, Young-Ho;Yu, Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.71-81
    • /
    • 1993
  • Thed effects of Ar or Oxygen RF plasma treatment on the adhesion behavior of Cr films to polyimide sub-strates have been investigated by using SEM, XRD, AES, and $90^{\circ}$peel test. By applying RF plasma treatment of the polyimide surface prior to metal deposition, the peel adhesion strength of Cu/Cr films sputtered onto the fully cured BPDA-PDA polyimide was highly increased from about 3g/mm to 90 ~ 100g/mm. Improved peel adhesion strength of Cr/polyimide interfaces due to RF plasma treatment was attributed to the contributions from surface cleaning, Cr-polyimide bonding at the interface, and force required for plastic deformation of the film. While the surface topology change of the polyimide caused by RF plasma treatment makes a little contri-bution to the improved adhesion.

  • PDF

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.