• Title/Summary/Keyword: Peel Strength

Search Result 342, Processing Time 0.032 seconds

Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by T-Peel Joint Test (T형 이음 접합에 의한 경량구조물용 접착이음강도의 평가)

  • 이강용;공병석;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.56-65
    • /
    • 1998
  • The bonding strength evaluation of the light weight materials for an electrical vehicle has been performed through the T-peel joint test in which the design paramete- rs such as joint style, adherend type, adherend thickness, adhesive thickness, and adhesive type are considered. It is experimentally observed that the peel strength of joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the peel strength of joint increases a little. Aluminum-FRP adherend combination shows such higher peel strength than that of Aluminum-Aluminum adherend combination. For the adhesive bonded joint, the results of FEM analysis agree with those of experiment. The adhesive bonded joint reinfored with a rivet gives higher peel strength than that of the joint without rivet.

  • PDF

Measurement of Adhesion Strength for Ceramic Sheet (세라믹 박판의 접착 강도 측정)

  • Huh, Y.H.;Kim, D.I.;Kim, D.J.;Lee, K.;Kim, D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • Adhesion strength of single layer ceramic capacitor sheet was measured using a peel testing system developed in this study. The peel test specimens with various dimensions were prepared from the ceramic sheet cast on the PET film. In peel test, the sheet specimen was adhered on the glass jig floating on the liquid media, which was designed to minimize the friction, and the specimen was then pulled up by micro-actuator. During the separation of the sheet from the PET film, peel force was measured. To normalize the testing condition, 3 different widths of the specimen were selected: 5, 10 and 20 mm. was used Furthermore, testing speed effect was investigated in this study. From the resullts using various testing conditions, the standard method for the peel strength testing may be suggested. Based on the testing condition, effect of peel angle on the strength was experimentally examined. It was found that the adhesive strength for the ceramic sheet is nearly identical, irrespective of the specimen width ranged from 5 to 20 mm, while the adhesive strength was increased with increasing testing speed. Furthermore, the strength was shown to be dependent on the peel angle.

  • PDF

A Study on the CFRP Treatment by ion Assisted Reaction Method to Improve T-peel Strength of CFRP/Aluminum Composites (CFRP/알루미늄 복합재에서 이온도움반응법을 적용한 CFRP의 표면처리가 T-peel 강도에 미치는 영향에 대한 연구)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Yun, Chang-Seon;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.570-575
    • /
    • 2002
  • It is well-known that the bond strength between CFRP(Carbon Fiber Reinforced Plastic) and aluminum is significantly affected by the surface treatment of the CFRP and the aluminum. This study investigates the surface treatment of CFRP to improve the T-peel strength of CFRP/aluminum composites. The surface of %CFRP([0^0]_{14})$ was treated by the ion assisted reaction method under oxygen environment. T-peel strength tests were performed based on the procedure of ASTM D1876-95. The T-peel strength of surface-treated CFRP/aluminum composites was compared with that of untreated CFRP/aluminum composites. The results showed that the T-peel strength of surface-treated CFRP/aluminum composites was about 5.5 times higher than that of untreated CFRP/aluminum composites. SEM examination showed that the improvement of T-peel strength was attributed to the uniform spread and fracture of epoxy adhesive.

Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films (Cu-Cr 합금박막의 필 접착력과 소성변형)

  • 이태곤;임준홍;김영호
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Adhesion Characteristics of Surface Treated Polyurethane Foam Core Sandwich Structures (표면 처리된 폴리우레탄 폼 샌드위치 구조의 접합 특성)

  • Lee, Chang-Sup;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.38-43
    • /
    • 2001
  • The interfacial adhesive joining characteristics of the foams are very important for the structural integrity of sandwich structures. Peel strength is one of the best criteria for the interfacial characteristics of the sandwich structures and peel energy is most commonly used for the interfacial characteristics. The peel strength is the first peak force per unit width of bond line required to produce progressive separation by the wedge or other crack opening type action of two adherends where one or both undergo significant bending and the peel energy is the surface active energy per unit width of bond line. In this work, to investigate the strengthening effect of resin treatment on the interfacial surface of foam material, peel strength and peel energy of epoxy resin treated polyurethane foam core sandwich structures were obtained by the cleavage peel tests and compared with those of non surface treated polyurethane foam core sandwich structures.

  • PDF

The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates (Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).

Comparison of bracket bond strength in various directions of force (교정용 브라켓에 가해지는 힘의 방향에 따른 결합강도의 비교)

  • Lee, Hyun-Jung;Lee, Hyung-Soon;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.359-370
    • /
    • 2003
  • The purpose of this study was to evaluate the bond strength of orthodontic brackets bonded to metal bar with chemically cured adhesive (Ortho-one, Bisco Co, USA) in various types and directions of force application. Three types of metal bracket with different bracket base configurations; Micro-Loc base(Tomy Co, Japan), Chessboard base(Daesung Co, Korea), Non-etched Foil-Mesh base(Dentaurum, Germany); were used in this study. Peel, shear, tensile bond strengths were measured by universal testing machine and compared each other. The peel force directions applied were $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ And then, in consideration of the different surface area of the bracket bases, the bond strength Per unit area were calculated and compared. The results obtained were summarized as follows: 1. The bond strengths according to the types and the directions of the forces were greatest at the shear forces in all three bracket base configuration groups(p<0.01). 2. As the peel force direction grew higher in degree, peel bond strength decreased. The Patterns of peel bond strength change according to force direction was similar in all three bracket base configurations. The minimum bond strength was 60 degree-peel bond strengths in all three bracket base configurations. 3. In Micro-Loc base group, minimum peel bond strength$(_{60}PBS)$ was in $29\%$ level of shear bond strength and $52\%$ level of tensile bond strength. In Chessboard base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $61\%$ level of tensile bond strength. In Non-etched Foil-Mesh base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $55\%$ level of tensile bond strength. 4. The bond strengths per unit area were lowest in Non-etched Foil-Mesh base group and highest in Chessboard base group(p<0.05). However, there were no differences in shear bond strength, tensile bond strength, $75^{\circ}\;and\;90^{\circ}$ per unit area between Micro-Loc and Chessboard base groups.

Peel Stength of the Acrylic Copolymer and Pressure Sensitive Adhesives (아크릴계 점착제의 박리강도와 점착부여제)

  • 김현중
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 1999
  • The stability and performance (peel strength) of the acrylic copolymer and various modified rosin systems were investigated. The peel strength was measured over a wide range of scaling rates, and the influence of the viscoelasticity of the PSA(pressure sensitive adhesive) was considered. In the case of miscible systems, the peak of peel strength (PSA performance) over wide peel rates was changed and modified systematically with increasing glass transition temperature of the blends. The peak of the peel strength for blended systems shifts toward the lower rate side as glass transition temperature ($T_g$) of the blend increased. The influence of esterification of the rosin on performance and stability against deterioration was greatly modified by blending with rosin of glycerol ester and rosin pentaerythritol ester. The failure mode of the blend varies with the combination with acrylic copolymer and modified rosin, and cohesive failure was found at a lower peel rate while interfacial failure was found at a high peel rate. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were detected.

  • PDF

Study of Peel Strength Property of Aluminum/Organic Composite (알루미늄/유기물 복합재료의 Peel 강도 특성에 대한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Kim, Seoung-Taek;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.217-218
    • /
    • 2007
  • Aluminum 분말과 고분자를 혼합하여 고분자-금속 복합재료(polymer-metal composite)를 만들어 copper foil과 기판의 접착력을 평가하였다. Tape casting 방법을 이용하여 sheet 만들고 vacuum lamination으로 PCB(Printed Circuit Board)기판을 제조한 후 포토공정으로 peel strength pattern을 형성하였으며, 본 연구에서는 최적의 aluminum 조건을 찾기 위하여 압력, 온도, copper foil의 표면 상태와 silane 표면 코팅에 따른 aluminum-polymer복합재료의 peel strength의 변화를 확인하였다. 최적의 조건은 silane 표면 코팅 처리를 한 aluminum 분말로 $210^{\circ}C$에서 $9.7kg/cm^2$ 압력으로 matte면의 돌기 크기가 크며, 응집이 잘 되어있는 copper foil을 사용하여 13.89N의 우수한 peel strength를 구현 할 수 있었다.

  • PDF

Peel Strength Analyses of Copper/Epoxy System (구리/에폭시 계의 필 접착력 분석)

  • 최광성;유진;이호영
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.4
    • /
    • pp.238-252
    • /
    • 1996
  • In order to study the effect of interface oxides on the adhesion strength of the copper/epoxy system, copper foils were immersed in black oxide or brown oxide forming solutions before lamination with epoxy prepregs, and variation of peel strength with the treatment time were investigated. Results showed that peel strength decreased rapidly up to 1 minute of treatment lime and remained constant in the case of the black oxide treated specimens, which was accompanied by the thickening of $Cu_2O$ at the Copper/Epoxy interface during the period. In contrast, peel strength increased rapidly up to 1 minute of treatment time and remained constant in the case of the brown oxide treated specimens, which could be ascribed to the thickening of CuO. Subsequent heat treatments of the Copper/Epoxy laminations at $120^{\circ}C$ in air showed that peel strength remained constant in the case of the black oxide treated specimens but decreased gradually in the case of the brown oxide treated specimens. Following XPS analyses revealed that the latter was possibly caused by the coalescence of CuO at the Copper/Epoxy interface into $Cu_2O$.

  • PDF