• Title/Summary/Keyword: Pediococcus

Search Result 266, Processing Time 0.019 seconds

The Effects of Low Temperature Heating and Mustard Oil on the Kimchi Fermentation (열처리 및 겨자유의 첨가가 김치 발효에 미치는 영향)

  • Hong, Wan-Soo;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.331-337
    • /
    • 1989
  • In order to investigate the method for extension of shelf-life of Kimchi, the effect of low temperature heating and addition of mustard oil on pH and total acidity of Kimchi during storage at $15^{\circ}C$ were studied. Mustard oil was found to have the antimicrobial effect on the major lactic acid bacteria of Kimchi such as Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides and Pediococcus cerevisiae, Addition of 200p.p.m. mustard oil, 0.1% mustard powder and 0.01% $H_2O_2$ to Kimchi effectively reduced the fermentation rate of Kimchi. Low temperature heating of salted cabbage and addition of 200p·p.m. mustard oil and 0.01% $H_2O_2$ to seasonings extented the time reaching optimum ripening of Kimchi about 2.5 times longer than control. Combination of low temperature heating, addition of mustard oil and $H_2O_2$ to seasonings and post low temperature heating delayed fermentation time Kimchi about 5 times longer than control after 15 days storage at $15^{\circ}C$.

  • PDF

Origin of lactic acid bacteria in mulkimchi fermentation

  • Hwang, Chung Eun;Haque, Md. Azizul;Hong, Su Young;Kim, Su Cheol;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.441-446
    • /
    • 2019
  • The assortment of endophytic lactic acid bacteria (LAB) in kimchi derives from its raw vegetables, which include Chinese cabbage, radish, welsh onion, onion, garlic, red pepper, and ginger. These vegetables were examined during mulkimchi fermentation using gene-specific multiplex polymerase chain reaction and 16S ribosomal RNA sequence analysis. Sixteen species from five LAB genera (Leuconostoc, Lactobacillus, Lactococcus, Pediococcus, and Weissella) appeared in the raw kimchi materials. Interestingly, nine LAB species were identified in mulkimchi on fermentation day 0 as follows: Leuconostoc carnosum, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc inhae, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis, and Weissella confusa. Seven additional LAB species were present in mulkimchi at fermentation day 9 as follows: Leuconostoc gasicomitatum, Leuconostoc kimchii, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus pentosus, Pediococcus pentosaceus, and Weissella koreensis. These species corresponded completely with the LAB in kimchi vegetables. Wei. confusa was the predominant LAB during early fermentation (pH 6.20 to 4.98 and acidity 0.20 to 0.64%), while Lac. sakei, Lac. plantarum, and Wei. koreensis became dominant later in fermentation (pH 4.98 to 3.88 and acidity 0.64 to 1.26%). These results collectively demonstrate that the LAB involved in mulkimchi fermentation originates from the raw vegetables examined.

Selection of Starter Cultures and Optimum Conditions for Lactic Acid Fermentation of Onion

  • Choi, You-Jung;Cheigh, Chan-Ick;Kim, Su-Woo;Jang, Jae-Kweon;Choi, Young-Jin;Park, Young-Seo;Park, Hoon;Shim, Kun-Sub;Chung, Myong-Soo
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1100-1108
    • /
    • 2009
  • Lactic acid bacteria (LAB) isolated from various fruits and vegetables were screened in order to determine appropriate fermentation starters for manufacturing functional fermented onion juice. From the initial screening test comprising more than 700 isolated LAB, 16 isolates were selected based on their acid production rate. Among the selected isolates, the fermentation broth of KC-007 exhibited the highest electron donating and nitrite scavenging activities, with values at pH 1.2 of 95.6 and 68.7%, respectively. From the overall results obtained in this study, we finally selected the bacterium KC-007 as a fermentation starter. This bacterium was identified and named as Pediococcus pentosaceus based on its morphological and physiological characteristics, carbon-utilization pattern (as assessed using an API 50CHL kit), and molecular genetic characteristics (as assessed using the nucleotide sequence of the 16S rRNA gene). The optimal temperature, pH, and starter inoculation concentration (v/v) required for growth of the isolated strain were $40^{\circ}C$, pH 4.0-6.0, and 2%(v/v), respectively.

Biochemical and Molecular Identification of Antibacterial Lactic Acid Bacteria Isolated from Kimchi (김치에서 항균활성 유산균의 분리 및 동정)

  • Kim, Soo-Young;Kim, Jong-Doo;Son, Ji-Soo;Lee, Si-Kyung;Park, Kab-Joo;Park, Myeong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.446-452
    • /
    • 2011
  • Total 480 lactic acid-producing bacteria were isolated from five kinds of kimchi, and their antibacterial activity was tested against Salmonella enterica serovar Typhimurium, Bacillus subtilis, and Pseudomonas aeruginosa using an agar diffusion assay. Among them, 340 isolates showed a halo on MRS agar against one or more indicator strains, which were identified using multiplex PCR, an API 50CHL kit, and a 16S rDNA sequence analysis. As a result, 169 Lactobacillus plantarum, 20 Lactobacillus fermentum, two Lactobacillus paracasei ssp. paracasei, two Lactobacillus sp., and 15 Pediococcus sp. were identified. This may be the first report on the isolation of antibacterial Lactobacillus fermentum from kimchi.

Effects of Six Different Starter Cultures on Mutagenicity and Biogenic Amine Concentrations in Fermented Sausages Treated with Vitamins C and E

  • Kim, Hyeong Sang;Lee, Seung Yun;Kang, Hea Jin;Joo, Seon-Tea;Hur, Sun Jin
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.877-887
    • /
    • 2019
  • This study was performed to determine changes in mutagenicity and biogenic amine concentrations in sausages fermented with six different starter cultures treated with vitamins C and E. Six different types of fermented sausages with different combination of starter cultures were manufactured. T1, Pediococcus acidilactici; T2, P. pentosaceus and Staphylococcus carnosus; T3, S. carnosus, S. xylosus, Debaryomyces hansenii, Lactobacillus curvatus, and P. pentosaceus; T4, S. carnosus and L. sakei; T5, S. xylosus and L. plantarum; and T6, Penicillium nalgiovensis. After treatment with vitamins C and E in fermented sausages, changes in mutagenicity and biogenic amine concentrations were measured. The sausages fermented with Staphylococcus xylosus and Lactobacillus plantarum starter cultures showed the most effective antimutagenic activity (p<0.05). The mutagenicity was further decreased in the sausages treated with vitamins C and E (p<0.05), regardless of the starter cultures. The use of Pediococcus acidilactici, S. xylosus, L. plantarum, and Penicillium nalgiovensis as starter cultures was effective in decreasing biogenic amine concentrations (p<0.05). In addition, vitamin E was more effective in decreasing the biogenic amine concentrations than vitamin C. In conclusion, we recommend the use of S. xylosus and L. plantarum as starter cultures, in addition to the use of vitamins C and E, to reduce the potential risk of meat mutagens in fermented sausages.

Lactic Acid, Ethylalcohol and 4-Ethylguaiacol Contents of Rapid Fermentation of Sardine Soy Sauce Prepared by Using Immobilized Whole Cells (고정화균체를 이용하여 속성 발효시킨 정어리 어간장의 젖산, 알코올 및 4-ethylguaiacol의 함량)

  • Ryu, Beung-Ho;Kim, Seong-Joon;Shin, Dong-Bun
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.456-462
    • /
    • 1992
  • This study was performed to rapid fermentation from sardine hydrolyzate by using column reactor. The column reactor was constructed from three glass columns $(30cm{\times}5cm)$ and each column was packed with colloidal silica and sodium alginate (1:5) on which Pediococcus halophilus R-22, Saccharomyces rouxii R-60 and Candida etchellsii H-50, respectively, was previously fixed. At that time, optimal conditions for rapid fermentation were found the pH of 5.2, temperature of $30^{\circ}C$ and 10% NaCl. For rapid fermentation, immobilized whole cells of P. halophilus R-22, S. ruoxii R-60 and C. etchellsii H-50 packed the each column reactor were produced 0.75% lactic acid, 2.5% ethylalcohol and 18 mg/l 4-ethylguaiacol under the optimal conditions.

  • PDF

Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

  • Park, Boyeon;Hwang, Hyelyeon;Lee, Jina;Sohn, Sung-Oh;Lee, Se Hee;Jung, Min Young;Lim, Hyeong In;Park, Hae Woong;Lee, Jong-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.524-530
    • /
    • 2017
  • Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results: L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ${\sim}2.6{\mu}g/mL$ to $6.5{\mu}g/mL$ and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

Retardation of Kimchi Fermentation and Growth Inhibition of Related Microorganisms by Tea Catechins (차엽카테킨의 김치발효 지연 및 관련 미생물의 증식억제)

  • Wee, Ji-Hyang;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1275-1280
    • /
    • 1997
  • The possible use of tea catechins as natural preservatives for kimchi was investigated in this study. Tea catechins separated from tea leaves had antimicrobial activity against microorganisms related to kimchi fermentation, such as Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus brevis, Pediococcus cerevisiae, Streptococcus faecalis. The degree of antimicrobial activity of catechins were different among microorganisms; that is 2 mg/mL to Leuconostoc mesenteroides, Lactobacillus plantarum, and Pediococcus cerevisiae, 4 mg/mL to Streptococcus faecalis, and 5 mg/mL to Lactobacillus brevis; however, Saccharomyces cerevisiae can not be inhibited. The effect of tea catechins on retardation of kimchi fermentation was tested by measuring changes in pH and acidity. The changes of pH and acidity of baechu-kimchi and mul-kimchi were remarkably inhibited by adding the tea catechins at the level of 2 mg/g fresh baechu. These results suggest that the tea catechins can be successfully used for the extension of shelf-life of kimchi.

  • PDF

Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

  • Bulgasem, Bulgasem Y.;Lani, Mohd Nizam;Hassan, Zaiton;Yusoff, Wan Mohtar Wan;Fnaish, Sumaya G.
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.302-309
    • /
    • 2016
  • The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

Microbial community analysis of commercial nuruk in Korea using pyrosequencing (파이로시퀀싱을 이용한 상업용 전통누룩의 미생물 군집분석)

  • Park, Ji-Hee;Kim, Song-Gun;Lee, Yong-Jae;Chung, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • Microbial communities of four commercial Korean nuruks were analyzed by the 454 pyrosequencing method to correlate different characteristics of rice wine fermentation. The total and average sequencing reads of fungi in the four nuruks were 14,800 and 3,494, respectively. At the phylum level, Ascomycota was dominant in three nuruks, namely, SH, SS, and JJ, while Zygomycota was dominant in SJ. Saccharomycopsis was dominant in nuruks subjected to longer fermentation periods, such as SH and SS. The total and average sequence reads for bacteria were 31,485 and 7,871, respectively. Bacteria belonging to the phylum Firmicutes were dominant in all samples. SH showed several genera of lactic acid bacteria, such as Lactobacillus, Leuconostoc, Pediococcus, and other minor bacteria. Staphylococcus and Bacillus were the dominant bacteria in JJ and SJ, respectively.