• Title/Summary/Keyword: Pedicle screw instrumentation

Search Result 20, Processing Time 0.029 seconds

Short-segment Pedicle Instrumentation of Thoracolumbar Burst-compression Fractures; Short Term Follow-up Results

  • Shin, Tae-Sob;Kim, Hyun-Woo;Park, Keung-Suk;Kim, Jae-Myung;Jung, Chul-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.265-270
    • /
    • 2007
  • Objective : The current literature implies that the use of short-segment pedicle screw fixation for spinal fractures is dangerous and inappropriate because of its high failure rate, but favorable results have been reported. The purpose of this study is to report the short term results of thoracolumbar burst and compression fractures treated with short-segment pedicle instrumentation. Methods : A retrospective review of all surgically managed thoracolumbar fractures during six years were performed. The 19 surgically managed patients were instrumented by the short-segment technique. Patients' charts, operation notes, preoperative and postoperative radiographs (sagittal index, sagittal plane kyphosis, anterior body compression, vertebral kyphosis, regional kyphosis), computed tomography scans, neurological findings (Frankel functional classification), and follow-up records up to 12-month follow-up were reviewed. Results : No patients showed an increase in neurological deficit. A statistically significant difference existed between the patients preoperative, postoperative and follow-up sagittal index, sagittal plane kyphosis, anterior body compression, vertebral kyphosis and regional kyphosis. One screw pullout resulted in kyphotic angulation, one screw was misplaced and one patient suffered angulation of the proximal segment on follow-up, but these findings were not related to the radiographic findings. Significant bending of screws or hardware breakage were not encountered. Conclusion : Although long term follow-up evaluation needs to verified, the short term follow-up results suggest a favorable outcome for short-segment instrumentation. When applied to patients with isolated spinal fractures who were cooperative with 3-4 months of spinal bracing, short-segment pedicle screw fixation using the posterior approach seems to provide satisfactory result.

Evaluation of the accuracy of mobile cone-beam computed tomography after spinal instrumentation surgery

  • Eom, Ki Seong;Park, Eun Sung;Kim, Dae Won;Park, Jong Tae;Yoon, Kwon-Ha
    • Journal of Trauma and Injury
    • /
    • v.35 no.1
    • /
    • pp.12-18
    • /
    • 2022
  • Purpose: Pedicle screw fixation provides 3-column stabilization, multidimensional control, and a higher rate of interbody fusion. Although computed tomography (CT) is recommended for the postoperative assessment of pedicle screw fixation, its use is limited due to the radiation exposure dose. The purpose of this preliminary retrospective study was to assess the clinical usefulness of low-dose mobile cone-beam CT (CBCT) for the postoperative evaluation of pedicle screw fixation. Methods: The author retrospectively reviewed postoperative mobile CBCT images of 15 patients who underwent posterior pedicle screw fixation for spinal disease from November 2019 to April 2020. Pedicle screw placement was assessed for breaches of the bony structures. The breaches were graded based on the Heary classification. Results: The patients included 11 men and four women, and their mean age was 66±12 years. Of the 122 pedicle screws, 34 (27.9%) were inserted in the thoracic segment (from T7 to T12), 82 (67.2%) in the lumbar segment (from L1 to L5), and six (4.9%) in the first sacral segment. Although there were metal-related artifacts, the image of the screw position (according to Heary classification) after surgery could be assessed using mobile CBCT at all levels (T7-S1). Conclusions: Mobile CBCT was accurate in determining the location and integrity of the pedicle screw and identifying the surrounding bony structures. In the postoperative setting, mobile CBCT can be used as a primary modality for assessing the accuracy of pedicle screw fixation and detecting postoperative complications.

Can Right-Handed Surgeons Insert Upper Thoracic Pedicle Screws in much Comfortable Position? Right-Handedness Problem on the Left Side

  • Akyoldas, Goktug;Senturk, Salim;Yaman, Onur;Ozdemir, Nail;Acaroglu, Emre
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.568-573
    • /
    • 2018
  • Objective : Thoracic pedicles have special and specific properties. In particular, upper thoracic pedicles are positioned in craniocaudal plane. Therefore, manipulation of thoracic pedicle screws on the left side is difficult for right-handed surgeons. We recommend a new position to insert thoracic pedicle screw that will be much comfortable for spine surgeons. Methods : We retrospectively reviewed 33 patients who underwent upper thoracic pedicle screw instrumentation. In 15 patients, a total of 110 thoracic pedicle screws were inserted to the upper thoracic spine (T1-6) with classical position (anesthesiologist and monitor were placed near to patient's head. Surgeons were standing classically near to patient's body while patients were lying in prone position). In 18 patients, a total of 88 thoracic pedicle screws were inserted to the upper thoracic spine with the new standing position-surgeons stand by the head of the patient and the anesthesia monitor laterally and under patient's belt level. All the operations performed by the same senior spine surgeons with the help of C-arm. Postoperative computed tomography scans were obtained to assess the screw placement. The screw malposition and pedicle wall violations were divided and evaluated separately. Cortical penetration were measured and graded at either : 1-2 mm penetration, 2-4 mm penetration and >4 mm penetration. Results : Total 198 screws were inserted with two different standing positions. Of 198 screws 110 were in the classical positioning group and 88 were in the new positioning group. Incorrect screw placement was found in 33 screws (16.6%). The difference between total screw malposition by both standing positions were found to be statistically significant (p=0.011). The difference between total pedicle wall violations by both standing positions were found to be statistically significant (p=0.003). Conclusion : Right-handedness is a problem during the upper thoracic pedicle screw placement on the left side. Changing the surgeon's position standing near to patient's head could provide a much comfortable position to orient the craniocaudal plane of the thoracic pedicles.

Accuracy of Freehand versus Navigated Thoracolumbar Pedicle Screw Placement in Patients with Metastatic Tumors of the Spine

  • De La Garza Ramos, Rafael;Echt, Murray;Benton, Joshua A.;Gelfand, Yaroslav;Longo, Michael;Yanamadala, Vijay;Yassari, Reza
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.777-783
    • /
    • 2020
  • Objective : To compare the accuracy and breach rates of freehand (FH) versus navigated (NV) pedicle screws in the thoracic and lumbar spine in patients with metastatic spinal tumors. Methods : A retrospective review of adult patients who underwent pedicle screw fixation in the thoracic or lumbar spine for metastatic spinal tumors between 2012 and 2018 was conducted. Breaches were assessed based on the Gertzbein and Robbins classification and only screws placed >4 mm outside of the pedicle wall (lateral or medial) were considered breached. Results : A total of 62 patients received 547 pedicle screws (average 8 per patient) - 34 patients received 298 pedicle screws in the FH group and 28 patients received 249 screws in the NV group. There were 40/547 breaches, corresponding to a breach and accuracy rate of 7.3% and 92.7%, respectively. The breach rate was 9.7% in the FH group and 4.4% in the NV group (chi-squared test, p=0.017); this corresponded to an accuracy rate of 90.3% and 95.6%, respectively. Only one patient from the overall cohort (in the FH group) required revision surgery due to a medial breach abutting the spinal cord (1.6% of all patients; 2.9% of FH patients); no patient suffered organ, vessel, or neurological injury from screw breaches. Conclusion : Navigated pedicle screw placement in patients with metastatic spinal tumors has a significantly higher radiographic accuracy compared to the FH technique. However, the revision surgery was low and no patient suffered from clinically-relevant breach. Navigation also offers the advantage of real-time localization of spinal tumors and aids in targeting and resection of these lesions.

A Computed Tomography-Based Anatomic Comparison of Three Different Types of C7 Posterior Fixation Techniques : Pedicle, Intralaminar, and Lateral Mass Screws

  • Jang, Woo-Young;Kim, Il-Sup;Lee, Ho-Jin;Sung, Jae-Hoon;Lee, Sang-Won;Hong, Jae-Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.166-172
    • /
    • 2011
  • Objective : The intralaminar screw (ILS) fixation technique offers an alternative to pedicle screw (PS) and lateral mass screw (LMS) fixation in the C7 spine. Although cadaveric studies have described the anatomy of the pedicles, laminae, and lateral masses at C7, 3-dimensional computed tomography (CT) imaging is the modality of choice for pre-surgical planning. In this study, the goal was to determine the anatomical parameter and optimal screw trajectory for ILS placement at C7, and to compare this information to PS and LMS placement in the C7 spine as determined by CT evaluation. Methods : A total of 120 patients (60 men and 60 women) with an average age of $51.7{\pm}13.6$ years were selected by retrospective review of a trauma registry database over a 2-year period. Patients were included in the study if they were older than 15 years of age, had standardized axial bone-window CT imaging at C7, and had no evidence of spinal trauma. For each lamina and pedicle, width (outer cortical and inner cancellous), maximal screw length, and optimal screw trajectory were measured, and the maximal screw length of the lateral mass were measured using m-view 5.4 software. Statistical analysis was performed using Student's t-test. Results : At C7, the maximal PS length was significantly greater than the ILS and LMS length (PS, $33.9{\pm}3.1$ mm; ILS, $30.8{\pm}3.1$ mm; LMS, $10.6{\pm}1.3$; p<0.01). When the outer cortical and inner cancellous width was compared between the pedicle and lamina, the mean pedicle outer cortical width at C7 was wider than the lamina by an average of 0.6 mm (pedicle, $6.8{\pm}1.2$ mm; lamina, $6.2{\pm}1.2$ mm; p<0.01). At C7, 95.8% of the laminae measured accepted a 4.0-mm screw with a 1.0 mm of clearance, compared with 99.2% of pedicle. Of the laminae measured, 99.2% accepted a 3.5-mm screw with a 1.0 mm clearance, compared with 100% of the pedicle. When the outer cortical and inner cancellous height was compared between pedicle and lamina, the mean lamina outer cortical height at C7 was wider than the pedicle by an average of 9.9 mm (lamina, $18.6{\pm}2.0$ mm; pedicle, $8.7{\pm}1.3$ mm; p<0.01). The ideal screw trajectory at C7 was also measured ($47.8{\pm}4.8^{\circ}$ for ILS and $35.1{\pm}8.1^{\circ}$ for PS). Conclusion : Although pedicle screw fixation is the most ideal instrumentation method for C7 fixation with respect to length and cortical diameter, anatomical aspect of C7 lamina is affordable to place screw. Therefore, the C7 intralaminar screw could be an alternative fixation technique with few anatomic limitations in the cases when C7 pedicle screw fixation is not favorable. However, anatomical variations in the length and width must be considered when placing an intralaminar or pedicle screw at C7.

The Clinical Experience of Computed Tomographic-Guided Navigation System in C1-2 Spine Instrumentation Surgery

  • Kim, Sang-Uk;Roh, Byoung-Il;Kim, Seong-Joon;Kim, Sang-Don
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.4
    • /
    • pp.330-333
    • /
    • 2014
  • Objective : To identify the accuracy and efficiency of the computed tomographic (CT)-based navigation system on upper cervical instrumentation, particularly C1 lateral mass and C2 pedicle screw fixation compared to previous reports. Methods : Between May 2005 and March 2014, 25 patients underwent upper cervical instrumentation via a CT-based navigation system. Seven patients were excluded, while 18 patients were involved. There were 13 males and five females; resulting in four degenerative cervical diseases and 14 trauma cases. A CT-based navigation system and lateral fluoroscopy were used during the screw instrumentation procedure. Among the 58 screws inserted as C1-2 screws fixation, their precise positions were evaluated by postoperative CT scans and classified into three categories : in-pedicle, non-critical breach, and critical breach. Results : Postoperatively, the precise positions of the C1-2 screws fixation were 81.1% (47/58), and 8.6% (5/58) were of non-critical breach, while 10.3% (6/58) were of critical breach. Most (5/6, 83.3%) of the critical breaches and all of non-critical breaches were observed in the C2 pedicle screws and there was only one case of a critical breach among the C1 lateral mass screws. There were three complications (two vertebral artery occlusions and a deep wound infection), but no postoperative instrument-related neurological deteriorations were seen, even in the critical breach cases. Conclusion : Although CT-based navigation systems can result in a more precise procedure, there are still some problems at the upper cervical spine levels, where the anatomy is highly variable. Even though there were no catastrophic complications, more experience are needed for safer procedure.

Limited Unilateral Decompression and Pedicle Screw Fixation with Fusion for Lumbar Spinal Stenosis with Unilateral Radiculopathy : A Retrospective Analysis of 25 Cases

  • Zhang, Li;Miao, Hai-xiong;Wang, Yong;Chen, An-fu;Zhang, Tao;Liu, Xiao-guang
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Objective : Lumbar spinal stenosis is conventionally treated with surgical decompression. However, bilateral decompression and laminectomy is more invasive and may not be necessary for lumbar stenosis patients with unilateral radiculopathy. We aimed to report the outcomes of unilateral laminectomy and bilateral pedicle screw fixation with fusion for patients with lumbar spinal stenosis and unilateral radiculopathy. Methods : Patients with lumbar spinal stenosis with unilateral lower extremity radiculopathy who received limited unilateral decompression and bilateral pedicle screw fixation were included and evaluated using visual analog scale (VAS) pain and the Oswestry Disability Index (ODI) scores preoperatively and at follow-up visits. Ligamentum flavum thickness of the involved segments was measured on axial magnetic resonance images. Results : Twenty-five patients were included. The mean preoperative VAS score was $6.6{\pm}1.6$ and $4.6{\pm}3.1$ for leg and back pain, respectively. Ligamentum flavum thickness was comparable between the symptomatic and asymptomatic side (p=0.554). The mean follow-up duration was 29.2 months. The pain in the symptomatic side lower extremity (VAS score, $1.32{\pm}1.2$) and the back (VAS score, $1.75{\pm}1.73$) significantly improved (p=0.000 vs. baseline for both). The ODI improved significantly postoperatively ($6.60{\pm}6.5$; p=0.000 vs. baseline). Significant improvement in VAS pain and ODI scores were observed in patients receiving single or multi-segment decompression fusion with fixation (p<0.01). Conclusion : Limited laminectomy and unilateral spinal decompression followed by bilateral pedicle screw fixation with fusion achieves satisfactory outcomes in patients with spinal stenosis and unilateral radiculopathy. This procedure is less damaging to structures that are important for maintaining posterior stability of the spine.

The Change of Biomechanical Milieu after Removal of mstnnnentation in lrunbar Arthrodesis Stiffness of fusion Mass: Finite Element Analysis (척추 유합술 후, 인접 분절의 스트레스에 대한 척추경 나사못에 대한 영향)

  • Kang, Kyoung-Tak;Chun, Heoung-Jae;Son, Ju-Hyun;Kim, Ho-Joong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.664-667
    • /
    • 2008
  • Since the advent of pedicle screw fixation system, posterior spinal fusion has markedly increased This intemal fixation system has been reported to enhance the fusion rates, thereby becoming very popular procedure in posterior spinal arthrodesis. Although some previous studies have shown the complications of spinal instruments removal, i.e. loss of correction and spinal collapse in scoliosis or long spine fusion patients, there has been no study describing the benefit or complications in lumbar spinal fusion surgery of one or two level. In order to clarify the effect of removal of instruments on mechanical motion profile, we simulated a finite element model of instrumented posterolateral fused lumbar spine model, and investigated the change of mechanical motion profiles after the removal of instrumentation.

  • PDF

The Effects of Spinopelvic Parameters and Paraspinal Muscle Degeneration on S1 Screw Loosening

  • Kim, Jin-Bum;Park, Seung-Won;Lee, Young-Seok;Nam, Taek-Kyun;Park, Yong-Sook;Kim, Young-Baeg
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.4
    • /
    • pp.357-362
    • /
    • 2015
  • Objective : To investigate risk factors for S1 screw loosening after lumbosacral fusion, including spinopelvic parameters and paraspinal muscles. Methods : We studied with 156 patients with degenerative lumbar disease who underwent lumbosacral interbody fusion and pedicle screw fixation including the level of L5-S1 between 2005 and 2012. The patients were divided into loosening and non-loosening groups. Screw loosening was defined as a halo sign larger than 1 mm around a screw. We checked cross sectional area of paraspinal muscles, mean signal intensity of the muscles on T2 weight MRI as a degree of fatty degeneration, spinopelvic parameters, bone mineral density, number of fusion level, and the characteristic of S1 screw. Results : Twenty seven patients showed S1 screw loosening, which is 24.4% of total. The mean duration for S1 screw loosening was $7.3{\pm}4.1$ months after surgery. Statistically significant risk factors were increased age, poor BMD, 3 or more fusion levels (p<0.05). Among spinopelvic parameters, a high pelvic incidence (p<0.01), a greater difference between pelvic incidence and lumbar lordotic angle preoperatively (p<0.01) and postoperatively (p<0.05). Smaller cross-sectional area and high T2 signal intensity in both multifidus and erector spinae muscles were also significant muscular risk factors (p<0.05). Small converging angle (p<0.001) and short intraosseous length (p<0.05) of S1 screw were significant screw related risk factors (p<0.05). Conclusion : In addition to well known risk factors, spinopelvic parameters and the degeneration of paraspinal muscles also showed significant effects on the S1 screw loosening.

Analysis of Scoliosis Correction Effects according to Instrumentation Devices using a Finite Element Model (유한요소 모델을 이용한 척추 측만증 교정 시 교정 기구에 따른 효과 분석)

  • 김영은;손창규;이광희;최형연;이춘기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.157-163
    • /
    • 2004
  • Scoliosis is a complex musculoskeletal dieses requiring 3-D treatment with surgical instrumentation. To investigate the effects of correction surgery, a finite element model of personalized model of the scoliotic spine that will allow the design of clinical test providing optimal estimation of the post-operation results was developed. Three dimensional skeletal parts, such as vertebrae, clavicle and scapular were modeled as rigid bodies with keeping their morphologies. Kinematical joints and spring elements were adapted to represent the inter-vertebral disc and ligaments respectively. With this model, two types of surgery procedure, distraction procedure with Harrington device and rod derotation procedure with pedicle screw and rod system had been carried out. The obtained simulation results were comparatively corresponding to the post operational outcomes and successfully demonstrated qualitative analysis of surgical effectiveness. From this analysis, it has been found that the preparing of appropriate rod curvature and its insertion was more important than just performing the excessive derotation for scoliosis correction.