• Title/Summary/Keyword: Pedestrians Signal

Search Result 74, Processing Time 0.027 seconds

A Study on the Beginning Time of Flashing Green Signals for Pedestrians (보행신호등 녹색점멸신호의 시작시점에 관한 연구)

  • Shim, Kywan-Bho;Ko, Myoung-Soo;Kim, Jeong-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.91-100
    • /
    • 2008
  • Pedestrians are exposed to accidents as a result of the lack of understanding the meaning of a flashing green signal. This study was to designed to relate changes of pedestrians' crossing characteristics as a functions of flashing green signal timings. A field survey was conducted to collect pedestrian preference and safety and it was examined by signal operation experiment. Two versions of new pedestrian signal timings were compared to the existing pedestrian signal timings. The results indicated that the number of pedestrians who starts to cross during flashing green signals was significantly decreased when flashing green signals started at 1/2 or 2/3 point of crossing. However, the number of pedestrians who remain in the crossing during red signals was significantly increased when flashing green signals started at 2/3 point of crossing. This study concludes that starting flashing green signals at 1/2 point of crossing is the safest. Also, implication and directions for its practical relevance were discussed.

Detection of Deterioration of Traffic Signal Controller Through Real-Time Monitoring (실시간 감시를 통한 교통신호제어기의 열화 감지)

  • Kim, Eun Y.;Jang, Joong S.;Oh, Bong S.;Park, Sang C.
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose: A traffic signal controller needs to control and coordinate to ensure that traffic and pedestrians move as smoothly as possible. Since a traffic signal controller has a significant impact on the safety of vehicles and pedestrians, it is important to monitor the failure and deterioration of the traffic signal controller. The purpose of this paper is to propose an IoT (Internet of Things)-based monitoring system for a traffic signal controller. Methods: Every traffic signal controller has a nominal system trajectory specified when it is deployed. The proposed IoT-based monitoring system collects the system trajectory information through real-time monitoring. By comparing the nominal system trajectory and the monitored system trajectory, we are able to detect the failure and deterioration of the traffic signal controller. Conclusion: The proposed IoT-based monitoring system can contribute to the safety of vehicles and pedestrians by maximizing the availability of a traffic signal controller.

Crash Risks and Crossing Behavior of older pedestrians in Mid-block Signalized Crosswalks (단일로 횡단보도에서의 고령보행자 횡단특성과 사고에 관한 연구)

  • Seo, Geumyeol;Choi, Jaisung;Jeong, Seungwon;Yeon, Junhyoung;Kim, Jeongmin
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.69-78
    • /
    • 2017
  • PURPOSES : In this study, we analyzed the road crossing behavior of older pedestrians on a mid-block signalized crosswalk, and compared it to that of younger pedestrians. In addition, we analyzed the correlation between accidents involving older pedestrians while crossing roads and their behavioral characteristics. Finally, we confirmed the reasons for an increase in accidents involving older pedestrians. METHODS : First, 30 areas with the highest incidence of accidents involving older pedestrians while crossing roads were selected as target areas for analysis. Next, we measured the start-up delay (the time elapsed from the moment the signal turns green to the moment the pedestrian starts walking) and head movement (the number of head turns during crossing a road) of 900 (450 older and 450 younger) pedestrians. The next step was to conduct a survey and confirm the differences in judgment between older and younger pedestrians about approaching vehicles. Finally, we analyzed the correlation between the survey results and traffic accidents. RESULTS : The average start-up delay and head movement of the older pedestrians was 1.58 seconds and 3.15 times, respectively. A definite correlation was obtained between head movement and the frequency of pedestrian traffic accidents. The results of our survey indicate that 17.3% of the older pedestrians and 7.8% of the younger pedestrians have a high crash risk. CONCLUSIONS : Behavioral characteristics of older pedestrians were closely correlated with accidents involving older pedestrians while crossing roads in mid-block signalized crosswalks. Our study indicates that in order to reduce the number of accidents involving older pedestrians, it is necessary to develop an improvement plan including measures such as installation of safety facilities taking the behavioral characteristics of older pedestrians into consideration and their safety education.

Multiple Pedestrians Detection using Motion Information and Support Vector Machine from a Moving Camera Image (이동 카메라 영상에서 움직임 정보와 Support Vector Machine을 이용한 다수 보행자 검출)

  • Lim, Jong-Seok;Park, Hyo-Jin;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • In this paper, we proposed the method detecting multiple pedestrians using motion information and SVM(Support Vector Machine) from a moving camera image. First, we detect moving pedestrians from both the difference image and the projection histogram which is compensated for the camera ego-motion using corresponding feature sets. The difference image is simple method but it is not detected motionless pedestrians. Thus, to fix up this problem, we detect motionless pedestrians using SVM The SVM works well particularly in binary classification problem such as pedestrian detection. However, it is not detected in case that the pedestrians are adjacent or they move arms and legs excessively in the image. Therefore, in this paper, we proposed the method detecting motionless and adjacent pedestrians as well as people who take excessive action in the image using motion information and SVM The experimental results on our various test video sequences demonstrated the high efficiency of our approach as it had shown an average detection ratio of 94% and False Positive of 2.8%.

Reinforcement Learning-Based Adaptive Traffic Signal Control considering Vehicles and Pedestrians in Intersection (차량과 보행자를 고려한 강화학습 기반 적응형 교차로 신호제어 연구)

  • Jong-Min Kim;Sun-Yong Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.143-148
    • /
    • 2024
  • Traffic congestion has caused issues in various forms such as the environment and economy. Recently, an intelligent transport system (ITS) using artificial intelligence (AI) has been focused so as to alleviate the traffic congestion problem. In this paper, we propose a reinforcement learning-based traffic signal control algorithm that can smooth the flow of traffic while reducing discomfort levels of drivers and pedestrians. By applying the proposed algorithm, it was confirmed that the discomfort levels of drivers and pedestrians can be significantly reduced compared to the existing fixed signal control system, and that the performance gap increases as the number of roads at the intersection increases.

An Analysis of Pedestrians' Speed according to Pedestrian Countdown Signal Systems (보행신호 잔여시간 표시장치에 따른 보행속도 분석)

  • Jang, Myeong-Sun;Im, Sam-Jin;Kim, Gyeong-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.43-53
    • /
    • 2006
  • Pedestrian countdown signals were newly introduced to make Pedestrians feel more comfortable and safer in crossing the streets This Paper analysed pedestrian walking-speed through a before-after behavior study Data was collected from 22 sites. and the total number of pedestrians was 19,800. The results showed that the average Pedestrian walking-speed of existing pedestrian signal, an inverted triangle countdown signal and a numeric countdown signal were 1.44, 1.39 and 1.42m/sec. The difference between the three methods was statistically significant. The results showed that the distribution of the walking-speed of existing signal. an inverted triangle countdown signal and a numeric countdown signal were statistically Erlang(0.117, 10) distribution. Weibull(1.17, 3.72) distribution and Gamma(0.137, 8.18) distribution at 95% confidence level.

HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control (교통신호제어를 위한 HOG 기반 보행자 검출 및 행동패턴 인식)

  • Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1017-1021
    • /
    • 2013
  • The traffic signal has been widely used in the transport system with a fixed time interval currently. This kind of setting time was determined based on experience for vehicles to generate a waiting time while allowing pedestrians crossing the street. However, this strict setting causes inefficient problems in terms of economic and safety crossing. In this research, we propose a monitoring algorithm to detect, track and check pedestrian crossing the crosswalk by the patterns of behavior. This monitoring system ensures the safety for pedestrian and keeps the traffic flow in efficient. In this algorithm, pedestrians are detected by using HOG feature which is robust to illumination changes in outdoor environment. According to a complex computation, the parallel process with the GPU as well as CPU is adopted for real-time processing. Therefore, pedestrians are tracked by the relationship of hue channel in image sequence according to the predefined pedestrian zone. Finally, the system checks the pedestrians' crossing on the crosswalk by its HOG based behavior patterns. In experiments, the parallel processing by both GPU and CPU was performed so that the result reaches 16 FPS (Frame Per Second). The accuracy of detection and tracking was 93.7% and 91.2%, respectively.

A Study on Pedestrian Priority Actuated Signal Control Considering Waiting Time for Walking and Pedestrian Stress (보행대기시간과 보행자스트레스를 고려한 보행자우선 감응신호 운영방안 연구)

  • Choi, Bongsoo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.18-29
    • /
    • 2022
  • Since the operation of an reft-turn actuated signal driven mainly by vehicles may increase the waiting time for walking, this signal causes inconvenience or stress to pedestrians. Therefore, in this study, the change in waiting time for walking before and after the application of an reft-turn actuated signal and the stress on the pedestrians were investigated through a questionnaire. The investigation showed that the waiting time for walking increased by 37% during non-peak time. Also the waiting time for walking of 62.1% of pedestrians became longer and 78% of them were stressed because of it. Meanwhile, simulation(VISSIM) showed that the vehicle travel speed slightly decreased to 1.07km/h(a 2.5% decrease), and the average waiting time for walking decreased by 15.51sec(a 28% decrease) with a pedestrian priority actuated signal. Therefore, it is expected that the pedestrian priority actuated signal can reduce the waiting time for walking and relieve pedestrian stress.

Constructing Effective Smart Crosswalk Traffic Light Mechanism Through Simulation Technique (시뮬레이션 기법을 통한 효율적 스마트 보행신호등 메커니즘 구축)

  • Lee, Hyeonjun;Moon, Soyoung;Kim, R.Youngchul;Son, Hyeonseung
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • The walking speed of handicapped people generally is slower than that of normal people. So it is difficult for them to cross at crosswalks within the allotted time provided by the traffic light. This problem can be solved by expanding the time of the traffic light. However, if the latency of the traffic light is increased without distinguishing the handicapped among all other pedestrians, the efficiency of traffic signal lights will decrease. In this paper, we propose a smart traffic signal connecting mechanism between the previous pedestrian traffic signal and a pedestrian's device (smartphone). This Smart pedestrian traffic light, through this mechanism, minimizes traffic congestion by providing additional walking time only to the handicapped among pedestrians. This crosswalk traffic light recognizes the handicapped using a technique called Internet of things (IOT). In this paper, we extract the data necessary to build an effective smart crosswalk traffic light mechanism through simulation techniques. We have extracted different kinds of traffic signal times with our virtual simulation environment to verify the efficiency of the smart crosswalk pedestrian traffic light system. This approach can validate the effective delay time of the traffic signal time through a comparison based on number of pedestrians.

Inferring Pedestrians' Emotional States through Physiological Responses to Measure Subjective Walkability Indices

  • Kim, Taeeun;Lee, Meesung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1245-1246
    • /
    • 2022
  • Walkability is an indicator of how much pedestrians are willing to walk and how well a walking environment is created. As walking can promote pedestrians' mental and physical health, there has been increasing focus on improving walkability in different ways. Thus, plenty of research has been undertaken to measure walkability. When measuring walkability, there are many objective and subjective variables. Subjective variables include a feeling of safety, pleasure, or comfort, which can significantly affect perceived walkability. However, these subjective factors are difficult to measure by making the walkability index more reliant on objective and physical factors. Because many subjective variables are associated with human emotional states, understanding pedestrians' emotional states provides an opportunity to measure the subjective walkability variables more quantitatively. Pedestrians' emotions can be examined through surveys, but there are social and economic difficulties involved when conducting surveys. Recently, an increasing number of studies have employed physiological data to measure pedestrians' stress responses when navigating unpleasant environmental barriers on their walking paths. However, studies investigating the emotional states of pedestrians in the walking environment, including assessing their positive emotions felt, such as pleasure, have rarely been conducted. Using wearable devices, this study examined the various emotional states of pedestrians affected by the walking environment. Specifically, this study aimed to demonstrate the feasibility of monitoring biometric data, such as electrodermal activity (EDA) and heart rate variability (HRV), using wearable devices as an indicator of pedestrians' emotional states-both pleasant-unpleasant and aroused-relaxed states. To this end, various walking environments with different characteristics were set up to collect and analyze the pedestrians' biometric data. Subsequently, the subjects wearing the wearable devices were allowed to walk on the experimental paths as usual. After the experiment, the valence (i.e., pleasant or unpleasant) and arousal (i.e., activated or relaxed) scale of the pedestrians was identified through a bipolar dimension survey. The survey results were compared with many potentially relevant EDA and HRV signal features. The research results revealed the potential for physiological responses to indicate the pedestrians' emotional states, but further investigation is warranted. The research results were expected to provide a method to measure the subjective factors of walkability by measuring emotions and monitoring pedestrians' positive or negative feelings when walking to improve the walking environment. However, due to the lack of samples and other internal and external factors influencing emotions (which need to be studied further), it cannot be comprehensively concluded that the pedestrians' emotional states were affected by the walking environment.

  • PDF