• Title/Summary/Keyword: Pedestrian Simulator

Search Result 23, Processing Time 0.02 seconds

Development of Simulation Technology Based on 3D Indoor Map for Analyzing Pedestrian Convenience (보행 편의성 분석을 위한 3차원 실내지도 기반의 시뮬레이션 기술 개발)

  • KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.67-79
    • /
    • 2017
  • Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.

Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용)

  • Jang, Ji Yong;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.106-118
    • /
    • 2014
  • The objective of this study is to develop a methodology for evaluating the effectiveness of in-vehicle pedestrian warning systems. Driving Simulator-based experiments were conducted to collect data to represent driver's responsive behavior. The braking frequency, lane change duration, and collision speed were used as measure of effectiveness (MOE) to evaluate the effectiveness. Collision speed data obtained from the simulation experiments were further used to predict pedestrian injury severity. Results demonstrated the effectiveness of warning information systems by reducing the pedestrian injury severity. It is expected that the proposed evaluation methodology and outcomes will be useful in developing various vehicular technologies and relevant policies to enhance pedestrian safety.

The Effect Analysis of Safe Driving Education for High-Risk Driver Groups in Sudden Pedestrian Crossing Situation Using a Driving Simulator (주행시뮬레이터를 활용한 보행자 돌발 횡단 상황에서의 고위험 운전자 유형별 안전운전 교육 효과분석)

  • Lee, Jaehyeon;Moh, Daesang;Hong, Jooneui;Lee, Chungwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.18-34
    • /
    • 2021
  • Pedestrian deaths in Korea due to traffic accidents are 40 percent of the fatalities in traffic accidents, which is about twice the average of OECD member countries. To reduce severe pedestrian accidents, it is necessary to apply the accident reduction measures to high-risk drivers (novice, elderly, and commercial vehicle drivers) who are more likely to cause traffic accidents than general drivers. Therefore, this study analyzed the effect of safe driving education on high-risk drivers' behavior. Here, the safe driving education is chosen as the measure to reduce traffic accidents. As part of the study, sudden pedestrian crossing situations were implemented in the driving simulator, and the vehicle trajectory data were collected to compare the driving behavior before and after the education. Most surrogate safety measures showed no improvement in the driving behavior of novice and elderly drivers, and the effect of safe driving education was found to be significant only in the group of commercial vehicle drivers. The results implied that additional measures such as pedestrian safety infrastructure and driver assistance systems, apart from the safe driving education, may be needed for novice and elderly drivers to reduce pedestrian accidents caused by them. With the findings mentioned above, this study is expected to provide a foundation to establish a plan to reduce pedestrian accidents caused by high-risk drivers.

Developing a Cellular Automata-based Pedestrian Model Incorporating Physical Characteristics of Pedestrians (보행자의 물리적 특성을 반영한 CA기반 보행모델)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.53-62
    • /
    • 2014
  • The floor field model is the micro pedestrian model based on a cellular automata for modeling pedestrian movement in the interior space using the static and dynamic floor field. It regards a form of pedestrian as square but the actual pedestrian's shape and size are similar to ellipsoid or rectangle. Because of this, we are difficult to give a rotation effect to pedestrians and there is a limit to reflect an impact of clogging and jamming. Also, this model is not able to reflect an impact of a posture and visibility effectively in the pedestrian movement. In this study, we suggest the improved pedestrian model incorporating the actual shape and size of pedestrian. The pedestrian's shape is defined not square but rectangle which is close to the actual body size of Korean. Also, we define the model which is able to represent the impact of clogging and jamming between pedestrians by adding the pedestrian's posture. We develop the simulator for testing the suggested model and study the difference between two models by comparing a number of effects. As a result, we could confirm solving the problem with dynamic value in the existed model and reflecting the panic effect in evacuation situation.

Design Criteria of Traffic Island Considering Pedestrian LOS (보행자 서비스 수준을 고려한 교통섬 설계기준 연구)

  • Park, Byung Ho;Beak, Tae Hun;Jung, Yong Il
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.23-31
    • /
    • 2012
  • The objective of this study is to develop the design criteria of traffic island considering pedestrian level of service (LOS). In pursuing the above, this study gives particular emphasis to suggesting the minimum design space of traffic island in order to maintain pedestrian LOS C and D, and the critical pedestrian traffic volume that reflects the intersection geometry (2 lanes per direction) through the simulation analysis. The main results are as follows. First, the spaces of 160 traffic islands, which meet the pedestrian LOS C and D and reflects the pedestrian traffic volume by signal cycle, are drawn by using a commercial simulator VISSIM. The relevant spaces of traffic island in terms of both the pedestrian LOS and the pedestrian traffic volume are evaluated to range from $3.0m^2$ to $41m^2$. Second, the critical pedestrian traffic volume for the operation of traffic island is evaluated to be 1,000-1,300 person/hour at LOS C and 1,600-1,800 person/hour at LOS D, respectively, when a cycle of 120-150 seconds were applied to a intersection with two lanes per direction.

An Indoor Pedestrian Simulation Model Incorporating the Visibility (가시성을 고려한 3차원 실내 보행자 시뮬레이션 모델)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.133-142
    • /
    • 2010
  • Many pedestrian or fire evacuation models have been studied last decades for modeling evacuation behaviors or analysing building structures under emergency situations. However, currently developed models do not consider the differences of visibility of pedestrians by obstacles such as furniture, wall, etc. The visibility of pedestrians is considered one of the important factors that affect the evacuation behavior, leading to making simulation results more realistic. In order to incorporate pedestrian's visibility into evacuation simulation, we should be able to give different walking speeds according to differences of visibility. We improved the existing floor field model based on cellular automata in order to implement the visibility. Using the space syntax theory, we showed how we split the indoor spaces depending on the different visibilities created by different levels of structural depths. Then, we improved the algorithm such that pedestrians have different speeds instead of simultaneous movement to other cells. Also, in order for developing a real time simulation system integrated w ith indoor sensors later, we present a process to build a 3D simulator using a spatial DBMS. The proposed algorithm is tested using a campus building.

An Optimal Model for Indoor Pedestrian Evacuation considering the Entire Distribution of Building Pedestrians (건물내 전체 인원분포를 고려한 실내 보행자 최적 대피모형)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • Existing pedestrian and evacuation models generally seek to find locally optimal solutions for the shortest or the least time paths to exits from individual locations considering pedestrian's characteristics (eg. speed, direction, sex, age, weight and size). These models are not designed to produce globally optimal solutions that reduce the total evacuation time of the entire pedestrians in a building when all of them evacuate at the same time. In this study, we suggest a globally optimal model for indoor pedestrian evacuation to minimize the total evacuation time of occupants in a building considering different distributions of them. We used the genetic algorithm, one of meta-heuristic techniques because minimizing the total evacuation time can not be easily solved by polynomial expressions. We found near-optimal evacuation path and time by expressing varying pedestrians distributions using chromosomes and repeatedly filtering solutions. In order to express and experiment our suggested algorithm, we used CA(cellular automata)-based simulator and applied to different indoor distributions and presented the results.

An Analysis on Evacuation Scenario at Metro-stations using Pedestrian Movement-based Simulation Model (보행류 기반 도시철도역사 평가 시뮬레이터를 활용한 대피 시나리오 분석)

  • You, So-young;Jung, Rea-hyuck;Chung, Jin-hyuck
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.36-49
    • /
    • 2016
  • A subway system is one of the major transportation modes at a metropolitan area. When it meets the other lines, the metro station, so-called transferring station, is usually threatened by severe pedestrian congestion and safety issue of transit users including the transportation vulnerable. Although transportation planners forecast travel demand at the beginning, it is not easy to predict pedestrian flows precisely for a long term if land use plans have dramatically changed. Due to expensive costs, structural extension of metro stations is limited. Therefore, it requires efficient and technical improvements as meeting the demand of pedestrian and physical characteristics. In this study, the core mechanism of pedestrian movement-based simulation model was introduced and evacuation scenarios were analyzed with the developed model. As a result, the multiple optimal routes for unexpected events at the solid space of the multiple stories are easily searched through the simulator and in the case of Sadang Station, travel time can be reduced by 60% when the evacuation information and intuitive design are provided.