• Title/Summary/Keyword: Pedestrian Simulation

Search Result 149, Processing Time 0.019 seconds

A Study on Real Time Signal Metering Operation at Roundabouts by Considering Queue Clearance Time (대기행렬 소거시간을 고려한 회전교차로 실시간 신호미터링 운영 연구)

  • Lee, Sol;Ahn, Woo-Young;Lee, Seonha;Cho, Han-Seon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2018
  • Roundabouts are generally installed at which traffic and pedestrian volume is relatively small intersections, and hence traffic can flow one direction around a circular island without traffic lights. A number of researches for roundabout signal metering have been processing ways to deal with operation efficiency drops in conditions of unusual traffic and pedestrian volume increases. However, there is still a shortcoming exists in previous operation algorithm does not consider the hidden vehicles between yield lines and detectors and queueing vehicles in circular lanes. These queueing vehicles between them can be cleared by introducing the queue clearance time. The purpose of this research is developing a real time signal metering operation algorithm by considering the vehicle queue clearance time. The results of varying queue clearance time application show that there is a substantial average vehicle delay reduction in VISSIM Com-Interface simulation. When the total number of entering vehicle is 3,200~4,800 vehicle/hour with varying queue clearance time application 21~50 seconds gives average delay reduction per vehicle by 16.1~71.7%.

Analysis of Highway Hazardous Area by Sun Glare Intensity Using GIS Simulation (GIS Simulation을 이용한 태양광에 의한 교통사고 위험지역 분석)

  • Kim, Ho-Yong;Baik, Ho-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.91-100
    • /
    • 2010
  • Existing traffic safety studies have focused on identifying the relationship among roadway crashes, highway design and incremental weather condition such as rainy/ice weather. However, it is hard to find researches that studied the effect of sun glare on traffic safety although there are abundant evidences demonstrating that fatal traffic crashes are attributed to the sun glare. Affecting drivers'vision particularly during the morning or the evening time when the sun positions close to the horizon, sun glare directly deteriorate drivers'judgmental capability. In this paper, we numerically analyze the effect of sun glare on the drivers'vision in time and space domains. Applied to the roadways around St Louis area in the United States, the GIS based simulation analysis identifies the time of day in a year and the segments of highways that are potentially influenced by the sun glare. This study evidentially confirms the fact that roadway bounded for West and East directions have longer time influenced by sun glare particularly during Spring and Fall season than other roadways. The computational result provides risky time periods of day at intersections or pedestrian crossings where the sun glare potentially endangers traffic safety, which be utilized to reduce the crashes due to the sun glare.

Applicability of Emergency Preemption Signal Control under UTIS (UTIS를 이용한 긴급차량 우선신호 제어방안)

  • Park, Soon-Yong;Kim, Dong-Nyong;Kim, Myung-Soo;Lee, Jung-Beom
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.27-37
    • /
    • 2012
  • Even thought the firefighters have to hurry to the scene to extinguish the blaze, the fire engines could not rushed out due to the worst of traffic condition. Traffic signal control is one of the most important methods to minimize the fire engines's travel time. The focus of this paper is to develop a traffic control strategy, which is emergency vehicle preemption algorithm considering pedestrian in order to reduce travel time of emergency vehicle. This algorithm also includes recovering strategy after preemption signal to minimize the other vehicle's delay. In order to estimate the effectiveness of traffic control, traffic simulation was performed using VISSIM micro simulation tool for two different kinds of networks, which were non-coordinated corridor and coordinated corridor. The differences of travel time and average delay between emergency vehicle and ordinary vehicle were respectively estimated under pre-existed pretimed signal and preemption traffic control at two respective networks. The results of the simulation for the emergency vehicle, travel time was reduced to 36.8~43.3% under "Add or Subtract" method whereas it was reduced to 30.7~46.0% under "Dwell" method. In addition, in non-coordinated corridor case of ordinary vehicle, average control delay of "Dwell" method was increased 33.5% whereas it grew 0.5% under coordinated corridor. And "Add or Subtract" method was confirmed that average control delay of ordinary vehicle was increased 0.7% under non-coordinated corridor whereas it swelled 4.5% under coordinated corridor.

Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder (72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석)

  • Mai, Viet-Chinh;Han, Sang Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.73-82
    • /
    • 2022
  • The study presents a three-dimensional approach to simulate the nonlinear behavior of a 72 m long Ultra High Performance Fiber Reinforced Concrete (UHPFRC) pre-stressed box girder for a pedestrian bridge in Busan, South Korea. The concrete damage plasticity (CDP) model is adopted to model the non-linear behavior of the UHPFRC material, in which the material properties are obtained from uniaxial compressive and tensile tests. The simulation model based on the proposed stress-strain curve is validated by the results of four-point bending model tests of a 50 m UHPFRC pre-stressed box girder. The results from the simulation models agree with the experimental observations and predict the flexural behavior of the 50 m UHPFRC pre-stressed box girder accurately. Afterward, the validated model is utilized to investigate the flexural behavior of the 72 m UHPFRC pre-stressed box girder. Here, the load-deflection curve, stress status of the girder at various load levels, and connection details is analyzed. The load-deflection curve is also compared with design load to demonstrate the great benefit of the slender UHPFRC box girder. The obtained results demonstrate the applicability of the nonlinear finite element method as an appropriate option to analyze the flexural behavior of pre-stressed long-span girders.

Carbon Reduction Effect of Traffic Operational Methods Itemized in National Project for Advanced Traffic Operation and Management (교통운영체계선진화의 탄소감축 효과 연구)

  • Kim, Wonchul;Kim, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.1-11
    • /
    • 2012
  • The presidential council on national competitiveness and the national police agency have initiated a national project to refresh the road traffic control and operation systems to increase operational efficiency at signalized intersections. It would reduce the number of stops and delay of vehicles at intersections and thus mitigate congestion and emission. Although significant reduction of carbon is expected as a consequential result, such effects has yet been studied since traffic operation was behind of interest in the field of green transportation where planning was mainly involved. This paper delivers the macroscopic effects of carbon reduction of the selected items of the national project: the ones managed by the police agency. The results showed that the studied items yield significant reduction of carbon: pedestrian push button operation, flashing signal operation, progression, lagging left turns, permitted left turn, and actuated left-turn operation would reduce 12.31%, 3.27%, 2.44%, 0.97%, 0.81%, and 0.72% of the total amount of carbon emitted a year in a whole transportation sector, respectively.

Development of a Communication Protocol for a Digital Traffic Signal Controller (디지털 교통신호제어기 통신체계 개발)

  • Kim, Min-Sung;Ko, Kwang-Yong;Lee, Choul-Ki;Jeong, Jun-Ha;Heo, Nak-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • Most of the current traffic signal controller use load switches to transmit high voltage power to the signal lamps. The direct transmission of high voltage power may cause a lot of problems like leakages of electric power, obstructions of pedestrian, environmental disfigurements. To overcome these problems, the development of digital type signal controller has been trying in the various methods. Digital communication between a master controller and signal lamps is the most important part to improve control performance in the digital type controller. A communication system for the digital signal controller was developed in this study. The system bases on CAN specification, includes ID structure for most peripheral devices like loops, signal lamps, push buttons, police switches. The operability of this system verified with a software based CAN simulation tool.

Design of Upper Body Detection System Using RBFNN Based on HOG Algorithm (HOG기반 RBFNN을 이용한 상반신 검출 시스템의 설계)

  • Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Recently, CCTV cameras are emplaced actively to reinforce security and intelligent surveillance systems have been under development for detecting and monitoring of the objects in the video. In this study, we propose a method for detection of upper body in intelligent surveillance system using FCM-based RBFNN classifier realized with the aid of HOG features. Firstly, HOG features that have been originally proposed to detect the pedestrian are adopted to train the unique gradient features about upper body. However, HOG features typically exhibit a very high dimension of which is proportional to the size of the input image, it is necessary to reduce the dimension of inputs of the RBFNN classifier. Thus the well-known PCA algorithm is applied prior to the RBFNN classification step. In the computer simulation experiments, the RBFNN classifier was trained using pre-classified upper body images and non-person images and then the performance of the proposed classifier for upper body detection is evaluated by using test images and video sequences.

Mathematical Programming and Optimization of the Resource Allocation and Deployment for Disaster Response : AED case study (수리계획법을 활용한 방재자원 배치 최적화: AED 배치 사례)

  • Hwang, Seongeun;Lee, Nagyeong;Jang, Dongkuk;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.53-58
    • /
    • 2021
  • The number of patients with cardiovascular diseases who experience an out-of-hospital cardiac arrest (OHCA) are increasing among young adults as well as the aged population. An automated external defibrillator (AED) is vital in improving survival rates of OHCA victims. Survival rates of OHCA were shown to decline exponentially in time to defibrillation, yet studies in Korea are uncommon that captures the properties of their survival rates in examining optimal locations of AEDs. In this study, we worked on the maximal gradual coverage location problem (MGCLP) with exponential decay coverage function to decide on their optimal locations. The exponential decay coverage function mitigates the drawback of over-estimating survival rates of OHCA patients. It is expected that a more sophisticated facility location problem will be developed to identify the "emergent" characteristics of pedestrians who responds to the OHCA occurrence by incorporating random pedestrian locations and movement through simulation.

Accuracy evaluation of threshold rainfall impacting pedestrian using ROC (ROC를 이용한 보행에 영향을 미치는 한계강우량의 정확도 평가)

  • Choo, Kyungsu;Kang, Dongho;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1173-1181
    • /
    • 2020
  • Recently, as local heavy rains occur frequently in a short period of time, economic and social impacts are increasing beyond the simple primary damage. In advanced meteorologically advanced countries, realistic and reliable impact forecasts are conducted by analyzing socio-economic impacts, not information transmission as simple weather forecasts. In this paper, the degree of flooding was derived using the Spatial Runoff Assessment Tool (S-RAT) and FLO-2D models to calculate the threshold rainfall that can affect human walking, and the threshold rainfall of the concept of Grid to Grid (G2G) was calculated. In addition, although it was used a lot in the medical field in the past, a quantitative accuracy analysis was performed through the ROC analysis technique, which is widely used in natural phenomena such as drought or flood and machine learning. As a result of the analysis, the results of the time period similar to that of the actual and simulated immersion were obtained, and as a result of the ROC (Receiver Operating Characteristic) curve, the adequacy of the fair stage was secured with more than 0.7.

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.