• 제목/요약/키워드: Pedestrian Detection

검색결과 187건 처리시간 0.029초

Unsteady aerodynamic force on a transverse inclined slender prism using forced vibration

  • Zengshun Chen;Jie Bai;Yemeng Xu;Sijia Li;Jianmin Hua;Cruz Y. Li;Xuanyi Xue
    • Wind and Structures
    • /
    • 제37권5호
    • /
    • pp.331-346
    • /
    • 2023
  • This work investigates the effects of transverse inclination on an aeroelastic prism through forced-vibration wind tunnel experiments. The aerodynamic characteristics are tri-parametrically evaluated under different wind speeds, inclination angles, and oscillation amplitudes. Results show that transverse inclination fundamentally changes the wake phenomenology by impinging the fix-end horseshoe vortex and breaking the separation symmetry. The aftermath is a bi-polar, one-and-for-all change in the aerodynamics near the prism base. The suppression of the horseshoe vortex unleashes the Kármán vortex, which significantly increases the unsteady crosswind force. After the initial morphology switch, the aerodynamics become independent of inclination angle and oscillation amplitude and depend solely on wind speed. The structure's upper portion does not feel the effect, so this phenomenon is called Base Intensification. The phenomenon only projects notable impacts on the low-speed and VIV regime and is indifferent in the high-speed. In practice, Base Intensification will disrupt the pedestrian-level wind environment from the unleashed Bérnard-Kármán vortex shedding. Moreover, it increases the aerodynamic load at a structure base by as much as 4.3 times. Since fix-end stiffness prevents elastic dissipation, the load translates to massive stress, making detection trickier and failures, if they are to occur, extreme, and without any warnings.

YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향 (Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network)

  • 왕욱비;진락;이추담;손진구;정석용;송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.157-165
    • /
    • 2020
  • 뉴-럴 네트워크와 자동운전 데이터 셋을 개발하는 목표중의 하나가 데이터 셋을 분할함에 따라서 움직이는 물체를 검출하는 성능을 개선하는 방법이 있다. 다크넷 (DarkNet) 프레임 워크에 있어서, YOLOv4 네트워크는 Udacity 데이터 셋에서 훈련하는 셋과 검증 셋으로 사용되었다. Udacity 데이터 셋의 7개 비율에 따라서 이 데이터 셋은 훈련 셋, 검증 셋, 테스트 셋을 포함한 3개의 부분 셋으로 나누어진다. K-means++ 알고리즘은 7개 그룹에서 개체 Box 차원 군집화를 수행하기 위해 사용되었다. 훈련을 위한 YOLOv4 네트워크의 슈퍼 파라메타를 조절하여 7개 그룹들에 대하여 최적 모델 파라메타가 각각 구해졌다. 이 모델 파라메타는 각각 7 개 테스트 셋 데이터에 비교하고 검출에 사용되었다. 실험결과에서 YOLOv4 네트워크는 Udacity 데이터 셋에서 트럭, 자동차, 행인으로 표현되는 움직이는 물체에 대하여 대/중/소 물체 검출을 할수 있음을 보여 주었다. 훈련 셋과 검증 셋, 테스트 셋의 비율이 7 ; 1.5 ; 1.5 일 때 최적의 모델 파라메타로서 가장 높은 검출 성능이었다. 그 결과값은, mAP50가 80.89%, mAP75가 47.08%에 달하고, 검출 속도는 10.56 FPS에 달한다.

고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 - (Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul -)

  • 이채연;권혁기;프레드릭 린드버그
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.26-49
    • /
    • 2018
  • 본 연구는 도시지역을 대상으로 태양복사모델링을 수행하고 검증하여, 도시 내 열스트레스 완화에 대한 적용 가능성을 논의하였다. 이를 위해 연구지역은 항공 LiDAR 자료를 기반으로 실제 건물과 식생의 형태와 높이가 구현되었고, 보행자높이에서의 단파 및 장파복사 플럭스가 모의될 수 있도록 해상도를 향상시켰다. 고층 및 저층 건물이 고밀도로 존재하는 주거지역 $4km^2$에서 SOLWEIG 모델을 이용하여 복사플럭스를 모의하고, 지표에너지수지시스템의 Net radiometer를 이용한 복사플럭스 관측자료로 검증하였다. 그 결과 여름철 맑은 날 가장 높은 정확도를 나타냈고, 같은 날에 대한 평균복사온도를 모의한 결과, 그림자영향이 적은 저층 건물지역과 도로표면에서 가장 높은 수치를 나타냈으며, 고층 건물지역과 식생지역에서는 그림자의 영향으로 상대적으로 낮은 수치를 나타냈다. 본 연구에서 제안된 방법은 보행자높이에서 도시 내 열스트레스 지역 관리를 위한 높은 신뢰도를 보여주었다. 더욱 확장되고 있는 도시재생 및 재개발에 있어서, 새로운 주거환경을 도입하기 위해 도시 기반시설을 계획할 때 자연 및 인공 도시환경 설정과 관련된 많은 기능이 적용될 수 있다.

구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발 (Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information)

  • 이민형;김영찬;정영제
    • 한국ITS학회 논문지
    • /
    • 제13권1호
    • /
    • pp.1-14
    • /
    • 2014
  • 국가정책 및 사회적 여건의 변화에 따라 도시부의 교통혼잡 완화를 위한 물리적 도로 확대가 한계에 다다른 지금 혼잡 완화를 위해서는 기존 도로의 효율성을 재고하는 방안이 간구되어야한다. 또한 지능형교통체계(ITS)는 과거 루프 및 영상검지기 등을 통한 도로기반 지점검지 중심의 교통정보 수집체계에서 도로, 자동차 및 보행자간의 다양한 수집 체계를 통한 실시간 구간검지 체계 중심의 차세대 지능형교통체계(C-ITS :Co-operative ITS)로 빠르게 진화하고 있으나 현재 교차로의 운영 및 제어를 위한 교통정보의 수집방법은 지점검지체계에 국한되어 있는 실정이다. 따라서 본 연구는 현재 Hi-pass에 적용된 DSRC기술을 통해 수집이 가능한 구간정보를 이용하여 접근로의 대기행렬 길이를 산정하고 이를 활용하는 독립교차로의 실시간 신호제어모형의 개발 및 평가를 목적으로 하였다. 대기행렬길이 추정을 위해 구간검지기를 통해 수집된 개별차량의 통행시간을 이용하여 시공도 상에 4개의 좌표값을 추정하였으며 한 주기동안 추정된 좌표값들을 통해 대기행렬이 생성되는 충격파의 속도 및 대기행렬길이를 추정하였다. 실시간 신호제어를 위해 각 방향별 추정된 대기행렬길이를 통해 전체 교차로의 대기행렬길이의 합이 최소가 되는 신호시간을 산정하였으며 API 기능을 제공하는 미시적 시뮬레이션 프로그램인 VISSIM을 활용하여 총 3개의 시나리오를 평가하여 알고리즘에 의해 교차로의 대기행렬 길이의 합이 최소가 되는 신호시간의 산정이 가능함을 확인하였다.

HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계 (Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation)

  • 김수진;조경순
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) 특징은 영상 기반 보행자 인식에서 널리 사용되고 있다. HOG 특징을 이용한 보행자 인식의 인식률을 높이는데 가장 중요한 역할을 하는 것은 보간 기술이다. HOG 특징 연산에 보간 기술을 적용하기 위해서는 각 픽셀의 기울기 방향에 가장 근접한 두 개의 기울기 방향 bin과 가중치를 계산해야 한다. 따라서 본 논문에서는 HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로를 제안한다. 제안하는 회로는 탄젠트 함수와 나눗셈 연산을 피하기 위해 미리 계산된 값을 테이블로 지정하여 사용하였으며, 탄젠트 함수와 가중치 값의 특성을 이용함으로써 회로 내 테이블의 크기를 최소화하였다. 또한 처리 속도 향상을 위해 파이프라인 구조를 적용하였으며, 효율적인 coarse 및 fine 탐색 방법을 적용하여 각 픽셀에 대한 기울기 방향 bin과 가중치를 두 클락 사이클 내에 계산한다. 본 논문에서 제안하는 회로는 $1^{\circ}$ 단위로 기울기 방향을 계산하여 기울기 방향 bin과 가중치를 모두 결정하기 때문에 HOG 특징을 위한 보간 기술에 적용되어 높은 인식률을 제공하기 위해 사용될 수 있다.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.41-51
    • /
    • 2023
  • 본 논문에서는 보행자의 걸음걸이로부터 분노 감정 검출을 위한 다중 시간 윈도 특징 추출 기술을 제안한다. 기존의 걸음걸이 기반 감정인식 기술에서는 보행자의 보폭, 한 보폭에 걸리는 시간, 보행 속력, 목과 흉부의 전방 기울기 각도(Forward Tilt Angle)를 계산하고, 전체 구간에 대해서 최솟값, 평균값, 최댓값을 계산해서 이를 특징으로 활용하였다. 하지만 이때 각 특징은 보행 전체 구간에 걸쳐 항상 균일하게 변화가 발생하는 것이 아니라, 때로는 지역적으로 변화가 발생한다. 이에 본 연구에서는 장기부터 중기 그리고 단기까지 즉, 전역적인 특징과 지역적인 특징을 모두 추출할 수 있는 다중 시간 윈도 특징 추출(Multi-Time Window Feature Extraction) 기술을 제안한다. 또한, 제안하는 특징 추출 기술을 통해 각 구간에서 추출된 특징들을 효과적으로 학습할 수 있는 앙상블 모델을 제안한다. 제안하는 앙상블 모델(Ensemble Model)은 복수의 분류기로 구성되며, 각 분류기는 서로 다른 다중 시간 윈도에서 추출된 특징으로 학습된다. 제안하는 특징 추출 기술과 앙상블 모델의 효과를 검증하기 위해 일반인에게 공개된 3차원 걸음걸이 데이터 세트를 사용하여 시험 평가를 수행했다. 그 결과, 4가지 성능 평가지표에 대해서 제안하는 앙상블 모델이 기존의 특징 추출 기술로 학습된 머신러닝(Machine Learning) 모델들과 비교하여 최고의 성능을 달성하는 것을 입증하였다.

보행 패턴 검출을 위한 동작센서 데이터 정규화 알고리즘 (Motion Sensor Data Normalization Algorithm for Pedestrian Pattern Detection)

  • 김남진;홍주현;이태수
    • 한국콘텐츠학회논문지
    • /
    • 제5권4호
    • /
    • pp.94-102
    • /
    • 2005
  • 본 연구는 3축 가속도센서를 소형 센서모듈로 구성하고 이를 사람의 신체 부위에 부착하여 센서의 3차원적 방향에 구애되지 않고 동작에 의한 중력방향의 가속도를 계산할 수 있는 장치와 알고리즘을 개발하였다. 센서모듈을 이용하여 컴퓨터 시스템에 의해 사람의 보행 및 동작을 측정하기 위해서는 정량적인 처리가 가능하도록 데이터를 가공하여야 한다. 센서모듈로부터 데이터의 획득, 가능한 범위의 직교 좌표계로 변환, 중력방향의 단일 스칼라 값 변환의 과정으로 센서 출력 데이터를 정규화 하였다. 정규화된 센서 데이터를 사용하여 보행 패턴 중에서 걷기 횟수를 구분할 수 있는 알고리즘을 적용한 개인휴대정보단말용 응용 프로그램을 작성하였다. 연구실 환경에서의 실험에서 개발된 알고리즘 및 장치의 보행수 측정 정확도는 약 97%이었다.

  • PDF

차량 장착 블랙박스 카메라를 이용한 효과적인 도로의 거리 예측방법 (Effective Road Distance Estimation Using a Vehicle-attached Black Box Camera)

  • 김진수
    • 한국정보통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.651-658
    • /
    • 2015
  • 최근에 자율주행자동차에 대해 매우 활발한 연구와 개발이 진행되고 있다. 자율주행자동차를 구현하기 위해서는 매우 많은 기술들이 융복합적으로 해결되어야 한다. 이를 위해 차량에 장착된 블랙박스는 단순히 녹화기능 뿐만 아니라 신호등인식, 보행자검출, 정지선인식 등과 같이 자율주행차량을 구현하기 위한 핵심적인 기능을 제공할 수 있어 많은 연구 대상이 되고 있다. 따라서 자율주행차량을 구현하기 위한 한 가지 접근방법으로서 본 논문에서는 차량에 장착된 블랙박스 카메라를 이용하여 도로상에 위치한 거리를 효과적으로 예측할 수 있는 수식적인 모델을 제시한다. 제안한 모델은 도로의 기준선과 관찰선의 폭 또는 블랙박스 장착 높이 정보만을 이용함으로써 실제 도로상의 거리를 예측하는데 효과적으로 활용할 수 있음을 보인다. 다양한 실험을 통하여 본 논문에서 제안한 도로상의 거리 예측 모델이 타당함을 보인다.

도로 상황인식을 위한 배경 및 로컬히스토그램 기반 객체 추적 기법 (Background and Local Histogram-Based Object Tracking Approach)

  • 김영환;박순영;오일환;최경호
    • Spatial Information Research
    • /
    • 제21권3호
    • /
    • pp.11-19
    • /
    • 2013
  • 도로에서 발생되는 차량간 충돌사고, 교통 소통 상황, 보행자 사고 등 다양한 도로 상황을 모니터링 및 자동으로 인식하여 교통정보를 제공하거나 긴급구난 서비스를 제공하기 위한 다양한 기술이 개발되고 있다. 도로 모니터링을 통한 다양한 객체 추적 및 상황인식을 위해서는 잡음 및 겹침 등에 강인한 객체 추적 기술이 요구된다. 본 논문에서는 외부 환경에서 Background Subtraction, LK-Optical Flow, 지역 기반 히스토그램 특징의 결합을 통해 추적을 위한 몇 가지 추정 인자를 생성하고 이를 통해 변화가 있는 객체, 잡음에도 비교적 강인한 추적 방법을 제안한다. 구체적으로는 객체의 초기 움직임 정보를 검출하기 위해 옵티컬 플로우를 적용하여 컬러 정보 및 밝기 변화에 무관한 이동 정보를 측정한다. 측정된 정보를 기반으로 하여 지역 히스토그램 기반 검증을 통해 신뢰도를 판단한다. 신뢰도가 낮을 경우 배경 제거 정보와 지역 히스토그램 트래커의 정보를 혼합하여 새로운 위치를 추정한다. 실험을 통해 제안된 기법이 객체를 추적하고 있는 도중 나타날 수 있는 충돌, 새로운 특징의 등장, 크기 변화 상황에 강인하게 동작함을 제시한다.

Rare Imaging of Fat Embolism Seen on Computed Tomography in the Common Iliac Vein after Polytrauma

  • Lee, Hojun;Moon, Jonghwan;Kwon, Junsik;Lee, John Cook-Jong
    • Journal of Trauma and Injury
    • /
    • 제31권2호
    • /
    • pp.103-106
    • /
    • 2018
  • Fat embolism refers to the presence of fat droplets within the peripheral and lung microcirculation with or without clinical sequelae. However, early diagnosis of fat embolism is very difficult because the embolism usually does not show at the computed tomography as a large fat complex within vessels. Forty-eight-year-old male with pedestrian traffic accident ransferred from a local hospital by helicopter to the regional trauma center by two flight surgeons on board. At the rendezvous point, he had suffered with dyspnea without any airway obstruction sign with 90% of oxygen saturation from pulse oximetry with giving 15 L of oxygen by a reserve bag mask. The patient was intubated at the rendezvous point. The secondary survey of the patient revealed multiple pelvic bone fracture with sacrum fracture, right femur shaft fracture and right tibia head fracture. Abdominal computed tomography was performed in 191 minutes after the injury and fat embolism with Hounsfield unit of -86 in his right common iliac vein was identified. Here is a very rare case that mass of fat embolism was shown within common iliac vein detected in computed tomography. Early detection of the fat embolus and early stabilization of the fractures are essential to the prevention of sequelae such as cerebral fat embolism.