• Title/Summary/Keyword: Pedestrian Algorithm

Search Result 167, Processing Time 0.036 seconds

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.

Automatic Pedestrian Removal Algorithm Using Multiple Frames (다중 프레임에서의 보행자 검출 및 삭제 알고리즘)

  • Kim, ChangSeong;Lee, DongSuk;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.26-33
    • /
    • 2015
  • In this paper, we propose an efficient automatic pedestrian removal system from a frame in a video sequence. It firstly finds pedestrians from the frame using a Histogram of Oriented Gradient(HOG) / Linear-Support Vector Machine(L-SVM) classifier, searches for proper background patches, and then the patches are used to replace the deleted pedestrians. Background patches are retrieved from the reference video sequence and a modified feather blender algorithm is applied to make boundaries of replaced blocks look naturally. The proposed system, is designed to automatically detect object and generate natural-looking patches, while most existing systems provide search operation in manual. In the experiment, the average PSNR of the replaced blocks is 19.246

Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier (HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현)

  • Kim, Jin-Yul;Park, Chan-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

Development of Fall Inducement System based on Pedestrian Biological Data for Fall Reproduction (낙상 재현을 위한 보행자 생체 정보 기반의 낙상 유도 시스템 개발)

  • Lee, Jong-il;Han, Jong-Boo;Koo, Jae Wan;Lee, Seokjae;Sohn, Dong-Seop;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2020
  • This paper is about a fall inducement system for guiding like a real fall. Reliable fall data can be used as an essential element in developing effective fall protection devices. We can get this data if the induced fall is very realistic. The proposed system analyzes gait characteristics and determines when to fall based on the pedestrian's biometric data. To estimate the fall inducement time, an active estimation algorithm was proposed using different biometric values for each pedestrian. The proposed algorithm is designed to response actively to the ratio of gait cycle and a stance period. To verify this system, an experimental environment was implemented using a multi-rail treadmill equipped with a ground reaction force measurement device. An experiment was conducted to induce falls to pedestrians using a fall inducement system. By comparing the experimental scene to the video of the actual fall, it has been confirmed that the proposed system can induce a reliable fall.

Object Detection and Tracking with Infrared Videos at Night-time (야간 적외선 카메라를 이용한 객체 검출 및 추적)

  • Choi, Beom-Joon;Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.183-188
    • /
    • 2015
  • In this paper, it is proposed to detect and track pedestrian and analyse tracking performance with nighttime CCTV video. The detection is performed by a cascade classifier with Haar-like feature trained with Adaboost algorithm. Tracking pedestrian is performed by a particle filter. As results of experiments, it is introduced that efficient number of particles and the distributions are applied to track pedestrian at the night-time. Performance of detection and tracking is verified with nighttime CCTV video that is obtained at alleys etc.

Improved Pedestrian Detection Using Object and Background Histograms (객체와 배경 히스토그램을 활용한 개선된 보행자 검출)

  • Jung, Jin-sik;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.410-412
    • /
    • 2021
  • This paper proposes an improved pedestrian detection method using object and background histograms. Objects detected through the HOG & SVM algorithm are detected in a square shape. Inside the square area, the background and the object area are mixed. If only the area of the object excluding the background is detected, various object-related information may be easily obtained. The size of the detected rectangle is readjusted using an xy-axis projection algorithm to fit the size of the object. And then, the improved object is detected by dividing the background and the object based on the histogram of the object in the readjusted square. The average values of precision and recall, which are reliability evaluations comparing the detected object with the original object, are 97.9% and 90%, respectively.

  • PDF

Indoor Positioning Algorithm Combining Bluetooth Low Energy Plate with Pedestrian Dead Reckoning (BLE Beacon Plate 기법과 Pedestrian Dead Reckoning을 융합한 실내 측위 알고리즘)

  • Lee, Ji-Na;Kang, Hee-Yong;Shin, Yongtae;Kim, Jong-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.302-313
    • /
    • 2018
  • As the demand for indoor location recognition system has been rapidly increased in accordance with the increasing use of smart devices and the increasing use of augmented reality, indoor positioning systems(IPS) using BLE (Bluetooth Lower Energy) beacons and UWB (Ultra Wide Band) have been developed. In this paper, a positioning plate is generated by using trilateration technique based on BLE Beacon and using RSSI (Received Signal Strength Indicator). The resultant value is used to calculate the PDR-based coordinates using the positioning element of the Inertial Measurement Unit sensor, We propose a precise indoor positioning algorithm that combines RSSI and PDR technique. Based on the plate algorithm proposed in this paper, the experiment have done at large scale indoor sports arena and airport, and the results were successfully verified by 65% accuracy improvement with average 2.2m error.

A Two-Stage Approach to Pedestrian Detection with a Moving Camera

  • Kim, Miae;Kim, Chang-Su
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.189-196
    • /
    • 2013
  • This paper presents a two-stage approach to detect pedestrians in video sequences taken from a moving vehicle. The first stage is a preprocessing step, in which potential pedestrians are hypothesized. During the preprocessing step, a difference image is constructed using a global motion estimation, vertical and horizontal edge maps are extracted, and the color difference between the road and pedestrians are determined to create candidate regions where pedestrians may be present. The candidate regions are refined further using the vertical edge symmetry features of the pedestrians' legs. In the next stage, each hypothesis is verified using the integral channel features and an AdaBoost classifier. In this stage, a decision is made as to whether or not each candidate region contains a pedestrian. The proposed algorithm was tested on a range of dataset images and showed good performance.

  • PDF

Deep Learning-Based Real-Time Pedestrian Detection on Embedded GPUs (임베디드 GPU에서의 딥러닝 기반 실시간 보행자 탐지 기법)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.357-360
    • /
    • 2019
  • We propose an efficient single convolutional neural network (CNN) for pedestrian detection on embedded GPUs. We first determine the optimal number of the convolutional layers and hyper-parameters for a lightweight CNN. Then, we employ a multi-scale approach to make the network robust to the sizes of the pedestrians in images. Experimental results demonstrate that the proposed algorithm is capable of real-time operation, while providing higher detection performance than conventional algorithms.