• Title/Summary/Keyword: Pedaling Rate

Search Result 3, Processing Time 0.023 seconds

Cyclists' Posture Factors Affecting Pedaling Rate in Cycle (사이클 페달 회전수에 영향을 미치는 자세 요인)

  • Hah, Chong-Ku;Jang, Young-Kwan;Ki, Jae-Sug;Kim, Sang-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • Despite the importance of cycling postures during cycling performances, there has been a very little research investigating cycling postures and pedaling rate for particularly concerning domestic cyclists. The aim of this study was to analyze correlations and effects between cycling postures and pedaling rate in track cycling. Twelve male racing cyclists (six racing and university cyclists) participated in this research. For this study, seven infrared cameras (Qualisys ProReflex MCU-240s) were used for collecting data and these were processed via QTM (Qualisys Tracker Manager) software. It appeared that pedaling rate had correlations with regard to a shoulder angle (R=-.601) and displacement between shoulder joints(R= -.637), but a knee (R=-.601) and ankle angle (R=.667). Moreover, two multiple regression equations of pedaling rate for cycling postures were significant and R2 of the first order equation y (pedaling rate) = 0.039x (knee angle) - 1.068 was less than the second order equation y = 0.006x2 - 1.287x + 69.674. In conclusion, cycling postures affected the pedaling rate. Further study should be researched on postures in relation to air resistance in a wind tunnel.

Pedaling Characteristics of Cycle Ergometer Using the MR Rotary Brake (MR 회전형 브레이크를 적용한 자전거 에르고미터의 주행 특성)

  • Yoon, Y.I.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1669-1673
    • /
    • 2008
  • A new cycle ergometer using a Magneto-Rheological (MR) rotary brake system has been developed for rehabilitation of hemiplegia patients to reduce uneven pedaling characteristics. For this purpose, a control method to adjust the resistance of the MR rotary brake in real time based on the magnitude of the muscular force exerted by the subject has been devised so that the mechanical resistance to the pedaling can be minimized when the affected leg was engaged for pedaling. A series of experiments were carried out with and without the engagement of this real-time control mode of MR rotary brake at different pedaling rate to find out the effect of the real-time control mode. The characteristics of the pedaling for these specific conditions were analyzed based on the variations in angular velocities of the pedal unit. The results showed that the variations in the angular velocities were decreased by 42.9% with the control mode. The asymmetry of pedaling between dominant and non-dominant leg was 19.63% in non-control mode and 1.97% in the control mode. The characteristics of electromyography(EMG) in the lower limbs were also measured. The observation showed that Integrated EMG(IEMG) reduced with the control mode. Therefore, the new bicycle system using MR brake with the real time control of mechanical resistance was found to be effective in recovering the normal pedaling pattern by reducing unbalanced pedaling characteristics caused by disparity of muscular strength between affected and unaffected leg.

A Design of Heart Rate Feedback Controller for the Regimen of Physical Activity of the Patient with Coronary Artery Disease (관상동맥질환자의 운동요법을 위한 심장 박동궤환조절기의 설계)

  • 김진일;박종국
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 1982
  • The regimen of physical activity of the patient with coronary artery disease requires that he should not overshoot the prescribed heart rate based on his age, health and fuctional status of the heart during his exercise. The step input of work load, however, involves a great danger of overshooting. The purpose of this study was to desigil a system that makes it passible for a subject to check the overshooting. This system shows on tile H.R-meter, the amplified and filtered heart-rate signal of the subject received by the photosensor on his earlobe, puts it in the lead coinpensational circuit where it is conpared with the reference input signal(=the presfribed heart rate). The output of the lead compensational circuit works the aull meter. By means of this null meter, the subject knows whether he is overshooting the prescribed heart rate or not. He can continue the natl meter needle at the'Zero'position through the control of the speed of pedaling of the bicycle ergometer, An experimental test, made on eight men and four women in healthy condition, showed that 91. 7% of them vlaintained the stable heart rate and that the overshooting of the desired heart rate did not exceed $\pm$2BPM. According to the result of this experiment, since the heart rate feedback controller makes it possible for the subject to take the prescribed exercise based not on the work load but on the heart rate which incidentally is inexpensive, it can be made use of as the instrument for the regimen of pflysical activity by the patient with coronary artery disease.

  • PDF