• Title/Summary/Keyword: Pedal System

Search Result 92, Processing Time 0.026 seconds

Effects of Pain Stimulation on EEG in Dogs Anesthetized withMedetomidine and Tiletamine/Zolazepam (Medetomidine과 Tiletamine/Zolazepam을 병용마취한 개에서 통증자극이 뇌파 변화에 미치는 영향)

  • Choi, Woo-Shik;Jang, Hwan-Soo;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • The aim of this study is to investigate whether medetomidine (MED) and tiletamine/zolazepam (ZT) combination in dogs provide the sufficient analgesia during the period of the stage of surgical anesthesia determined by the response to the noxious stimuli, which were evaluated by the change of electroencephalogram (EEG) and hemodynamic values. Seven clinically healthy, adult beagle dogs were used. They were used repeatedly at interval of a week, according to a randomized design. This study had 2 experimental groups. In Group 1, dogs received $30\;{\mu}g/kg$ of medetomidine and 10 mg/kg of tiletamine/zolazepam. Both drugs were administered intramuscularly. In Group 2, dogs were medicated with the same method as in Group 1, except the pedal withdrawal reflex test was done. In Group 2, interdigital regions were grasped with a mosquito forceps for 30 seconds, every 5 min from 10 min to 45 min after ZT injection. During all recording stages, the power for each band, mean arterial pressure and heart rates were calculated. On EEG, no significant changes were observed between groups. Although mean arterial pressure and heart rate were increased 10 min after ZT injection, no significant differences were observed between groups. In conclusion, the MED and ZT anesthesia in dogs are seemed to provide a satisfactory analgesic effect during the period of surgical anesthesia based on EEG with pedal withdrawal reflex test.

Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator (가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

The Development of the Automatic Transmission for Bicycle Using Internally Geared Hub (내장기어허브를 이용한 자전거 자동변속장치의 개발)

  • Lee, Man Ho;Choi, Jun Ho;Lee, Kun Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.393-400
    • /
    • 2014
  • In this study, an automatic transmission was developed for a bicycle. This transmission uses the pedal rpm and riding speed information for efficient riding. This transmission was installed on a bicycle using an internally geared hub. The automatic transmission was developed for a beginner to ride with proper gear changes. Indoor ride tests were performed to assess the performance of this transmission. Here, a 'beginner' is defined as a bicycle rider who can maintain a riding power of ~150W with a maximum heart rate of ~80%. Furthermore, 'ride with proper gear change' means that the rider could ride the bicycle while maintaining an efficient pedal rpm by the automatic transmission. One expert and four beginners participated in the ride test. The expert was chosen for the comparison with the beginners. To minimize environmental disturbances, the ride test was performed indoors. In this test, two types of gear changes manual and automatic were tested on two types of roads a road with a gradual incline of 0-3% and a road that simulates the bicycle road along the Han river in Seoul. The results of the ride tests show that the algorithm applied for the automatic transmission helps beginners to ride the bicycle efficiently.

Effect of the respiratory rate on the pulse pressure variation induced by hemorrhage in anesthetized dogs

  • Dalhae, Kim;Won-Gyun, Son;Donghwi, Shin;Jiyoung, Kim;Inhyung, Lee
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.68.1-68.8
    • /
    • 2022
  • Background: Studies on anesthetized dogs regarding pulse pressure variation (PPV) are increasing. The influence of respiratory rate (RR) on PPV, in mechanically ventilated dogs, has not been clearly identified. Objectives: This study evaluated the influence of RR on PPV in mechanically ventilated healthy dogs after hemorrhage. Methods: Five healthy adult Beagle dogs were premedicated with intravenous (IV) acepromazine (0.01 mg/kg). Anesthesia was induced with alfaxalone (3 mg/kg IV) and maintained with isoflurane in 100% oxygen. The right dorsal pedal artery was cannulated with a 22-gauge catheter for blood removal, and the left dorsal pedal artery was cannulated and connected to a transducer system for arterial blood pressure monitoring. The PPV was automatically calculated using a multi-parameter monitor and recorded. Hemorrhage was induced by withdrawing 30% of blood (24 mL/kg) over 30 min. Mechanical ventilation was provided with a tidal volume of 10 mL/kg and a 1:2 inspiration-to-expiration ratio at an initial RR of 15 breaths/min (baseline). Thereafter, RR was changed to 20, 30, and 40 breaths/min according to the casting lots, and the PPV was recorded at each RR. After data collection, the blood was transfused at a rate of 10 mL/kg/h, and the PPV was recorded at the baseline ventilator setting. Results: The data of PPV were analyzed using the Friedman test followed by the Wilcoxon signed-rank test (p < 0.05). Hemorrhage significantly increased PPV from 11% to 25% at 15 breaths/min. An increase in RR significantly decreased PPV from 25 (baseline) to 17%, 10%, and 10% at 20, 30, and 40 breaths/min, respectively (all p < 0.05). Conclusions: The PPV is a dynamic parameter that can predict a dog's hemorrhagic condition, but PPV can be decreased in dogs under high RR. Therefore, careful interpretation may be required when using the PPV parameter particularly in the dogs with hyperventilation.

Development of High-Efficiency Low-Cost Drive System of Small-Size Electric Vehicles

  • Duong, Thuy-Lien;Tran, Thanh-Vu;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-110
    • /
    • 2012
  • This paper designs the high-efficiency and the low-cost drive system of the smallsize electric vehicles (EVs). The power circuit for driving the dc motor is designed by considering both the cost and efficiency. In order to reduce the conduction loss of MOTFET and diode for controlling an armature voltage, some MOSFETs and diodes at the armature are in parallel connection. An operating sequence for both the field current and the armature voltage according to the accelerator pedal angle is suggested for changing smoothly the rotating direction of dc motor. Through the simulation studies, the performances of the proposed methods are verified.

Experimental Modeling of Acceleration and Brake Systems for Autonomous Vehicle (자율주행자동차 가속/제동시스템의 실험적 모델링)

  • Lee, Jong-Eon;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.642-651
    • /
    • 2016
  • For the acceleration and brake systems of an autonomous vehicle, the dynamic models from acceleration (brake) pedal input to driving(braking) torque at the vehicle wheel are represented by a set of linear transfer functions in this paper. We present an experimental method that can identify these models using a single rectangular pulse response data. Various magnitude of inputs with different running speeds are applied to experimental tests. All the identified models are demonstrated by the measured data. Both acceleration and brake models have been also validated by comparing the velocity of a full vehicle model associated with the proposed models with the measured vehicle velocity.

Development of High-Efficiency Drive System of DC Motors for Tracking Small-Size Electric Vehicles (소형전기자동차 견인용 직류전동기의 고효율 구동시스템 개발)

  • Duong, Thuy Lien;Tran, Thanh Vu;Chun, Tae-Won;Lee, Hong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1634-1640
    • /
    • 2012
  • This paper develops the high-efficiency drive system of the small-size electric vehicles (EVs) driven by the brushed dc motors. A power circuit for driving the dc motor is designed with the H-bridge circuit and buck converter by considering both the efficiency and cost. In order to change smoothly the rotating direction of dc motor driven by the proposed power circuit, an operating sequence for both the field current and the armature voltage according to an accelerator pedal angle is suggested. Through the simulation studies and experimental results with the low-cost 8-bit AVR, the performances of the proposed methods are verified.

Design of Precise Torque Controller for Electric Bicycle with Cadence Sensing Drive System (Cadence Sensing 방식의 전기자전거를 위한 정밀 토크제어 컨트롤러 설계)

  • Lee, Juyeon;Kim, Daesoon;Lee, Jongha;Song, Jeho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.134-139
    • /
    • 2017
  • In this paper, a novel torque control scheme is proposed and implemented to handle the torque level of ebike precisely. By adopting moving average filters to eliminate throttle noise, ebike driver could control throttle level on wide span of 256 steps. Designed controller is plugged into ebike and tested to demonstrate it's linear control incomparable to conventional cadence sensing controller.

Implementation of the portable brake judder measurement system by use of the Labview (LabView를 이용한 휴대형 브레이크 저더 측정 시스템 구현)

  • Shin, Dong-Uk;Kim, Sun-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.569-574
    • /
    • 2008
  • In Because DTV comes to origin of car body shock or brake pedal flutter occurrence in car. This in development of measurement device that can examine this in driver protection dimension or at production early sending of goods visual point purpose of this study have. In this paper, I developed portable Brake Judder measurement system by use of the DTV.

A Study on the Improved EDR Storage Data to Identify the Cause of Unintended Acceleration of Eco-friendly Vehicles (친환경 자동차의 급발진 원인 규명을 위한 EDR 저장 데이터 개선방안 연구)

  • Lee, Sang Bae;Kim, Dong Han;Moon, Byoung Joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we propose the improved EDR (Event Data Recorder) storage data, which can identify the cause of unintended acceleration of eco-friendly vehicles. The proposed EDR storage data includes the brake pressure sensor value and a brake pedal travel sensor value. To verify the proposed EDR storage data, we observe the control algorithm and internal structure of the vehicle dynamic control system and a regenerative braking system in an eco-friendly vehicle.