• Title/Summary/Keyword: Pecking motion

Search Result 8, Processing Time 0.019 seconds

COMPARATIVE STUDY ON MORPHOLOGY OF CROSS-SECTION AND CYCLIC FATIGUE TEST WITH DIFFERENT ROTARY NITI FILES AND HANDLING METHODS (수종의 NiTi 전동 파일 단면 형태 비교 및 pecking motion의 사용방법이 피로 파절에 미치는 영향)

  • Kim, Jae-Gwan;Kum, Kee-Yeon;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2006
  • There are various factors affecting the fracture of NiTi rotary files. This study was performed to evaluate the effect of cross sectional area, pecking motion and pecking distance on the cyclic fatigue fracture of different NiTi files. Five different NiTi $files-Profile^{(R)}$ (Maillefer, Ballaigue, Switzerland), $ProTaper^{TM}$(Maillefer, Ballaigue, Switzerland), $K3^{(R)}$ (SybronEndo. Orange, CA) , Hero $642^{(R)}$ (Micro-mega, Besancon, France), Hero $Shaper^{(R)}$ (Micro-mega, Besancon, France)-were used. Each file was embedded in temporary resin, sectioned horizontally and observed with scanning electron microscope. The ratio of cross-sectional area to the circumscribed circle was calculated. Special device was fabricated to simulate the cyclic fatigue fracture of NiTi file in the curved canal,. On this device, NiTi files were rotated (300rpm) with different pecking distances (3 mm or 6 mm) and with different motions (static motion or dynamic pecking motion) . Time until fracture occurs was measured. The results demonstrated that cross-sectional area didn't have any effect on the time of file fracture. Among the files, $Profile^{(R)}$ took the longest time to be fractured. Between the pecking motions, dynamic motion took the longer time to be fractured than static motion. There was no significant difference between the pecking distances with dynamic motion, however with static motion, the longer time was taken at 3mm distance. In this study, we could suggest that dynamic pecking motion would lengthen the time for NiTi file to be fractured from cyclic fatigue.

Screw-in forces during instrumentation by various file systems

  • Ha, Jung-Hong;Kwak, Sang Won;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.304-309
    • /
    • 2016
  • Objectives: The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Materials and Methods: Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS-k, DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Results: Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest (p < 0.05). Conclusions: Geometrical differences rather than shaping motion and alloys may affect the screw-in force during canal instrumentation. To reduce screw-in forces, the use of NiTi files with smaller cross-sectional area for higher flexibility is recommended.

Effect of repetitive pecking at working length for glide path preparation using G-file

  • Ha, Jung-Hong;Jeon, Hyo-Jin;Abed, Rashid El;Chang, Seok-Woo;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Objectives: Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. Materials and Methods: The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10). Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0) and 1 mm level (D1) under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05). Results: The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05). Conclusions: Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.

Cyclic fatigue test on different rotary NiTi files and handling methods

  • Kim, Jae-Kwan;Kim, Eui-Seong
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.599-599
    • /
    • 2003
  • Endodontic rotary NiTi(Nickel-Titanium) files have several advantages, but they also have some problems. Fracture of instrument is the one of the problems. Cyclic fatigue fracture may not give a previous sign(ex, bending or distortion of the files) before it happen. It is affected by various factors. This study investigated time which takes for cyclic fatigue fracture to happen and fracture patterns with regard to different NiTi files and pecking motion.(omitted)

  • PDF

COMPARISON OF SCREW-IN EFFECT FOR SEVERAL NICKEL-TITANIUM ROTARY INSTRUMENTS IN SIMULATED RESIN ROOT CANAL (모형 레진 근관에서 수종의 전동 니켈-티타늄 파일에 대한 screw-in effect 비교)

  • Ha, Jung-Hong;Jin, Myoung-Uk;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.267-272
    • /
    • 2010
  • Screw-in effect is one of the unintended phenomena that occurs during the root canal preparation with nickel-titanium rotary files. The aim of this study was to compare the screw-in effect among various nickel-titanium rotary file systems. Six different nickel-titanium rotary instruments (ISO 20/.06 taper) were used: $K3^{TM}$ (SybronEndo, Glendora, CA, USA), $M_{two}$ (VDW GmbH, Munchen, Germany), NRT with safe-tip and with active tip (Mani Inc., Shioya-gun, Japan), ProFile$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland). For ProTaper$^{(R)}$, S2 was selected because it has size 20. Root canal instrumentations were done in sixty simulated single-curved resin root canals with a rotational speed of 300 rpm and single pecking motion. A special device was designed to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in a computer with designed software (LCV-USE-VS, Lorenz Messtechnik GmbH, Alfdorf, Germany). The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. P value of less than 0.05 was regarded significant. ProTaper$^{(R)}$ produced significantly more screw-in effects than any other instruments in the study (p < 0.001). $K3^{TM}$ produced significantly more screw-in effects than $M_{two}$, and ProFile$^{(R)}$ (p < 0.001). There was no significant difference among $M_{two}$, NRT, and ProFile$^{(R)}$ (p > 0.05), and between NRT with active tip and NRT with safe one neither (p > 0.05). From the result of the present study, it was concluded, therefore, that there seems significant differences of screw-in effect among the tested nickel-titanium rotary instruments. The radial lands and rake angle of nickel-titanium rotary instrument might be the cause of the difference.

Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

  • Ha, Jung-Hong;Park, Sang-Shin
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.215-219
    • /
    • 2012
  • Objectives: The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods: Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer) were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer), #15 NiTi K-file NITIFLEX (Dentsply Maillefer), modified #16 Path File (equivalent to #18), and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer) at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results: Group 4 showed lowest screw-in effect ($2.796{\pm}0.134$) among the groups (p < 0.05). Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions: The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.

Influence of taper on the screw-in effect of nickel-titanium rotary files in simulated resin root canal (모형 레진근관에서 니켈-티타늄 전동 파일의 경사도가 screw-in effect에 미치는 영향)

  • Sung, Hye-Jin;Ha, Jung-Hong;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.380-386
    • /
    • 2010
  • Objectives: The introduction of nickel-titanium alloy endodontic instruments has greatly simplified shaping the root canal systems. However, these new instruments have several unexpected disadvantages. One of these is tendency to screw into the canal. In this study, the influence of taper on the screw-in effect of the Ni-Ti rotary instrument were evaluated. Materials and Methods: A total of 20 simulated root canals with an S-shaped curvature in clear resin blocks were divided into two groups. ProFile .02, .04, .06 (Dentsply-Maillefer) and GT rotary files .08, .10, .12 (Dentsply) were used in Profile group, and K3 .04, .06, .08, .10, and .12 (SybronEndo, Glendora) were used in K3 group. Files were used with a single pecking motion at a constant speed of 300 rpm. A special device was made to measure the force of screw-in effect. A dynamometer of the device recorded the screwin force during simulated canal preparation and the recorded data was stored in computer with designed software. The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. p value of less than 0.05 was regarded significant. Results: The more tapered instruments generated more screw-in forces in Profile group (p < 0.05). In K3 group, 0.08, 0.10. and 0.12 tapered instruments showed more screw-in force than 0.04 tapered one, and 0.08 and 0.12 tapered instruments showed more screw-in force than 0.06 tapered one (p < 0.05). Conclusions: The more tapered instruments seems to produce more screw-in force. To avoid this screw-in force during instrumentation, more attention may be needed when using more tapered instruments.

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.