• 제목/요약/키워드: Pebble Bed Modular Reactor(PBMR)

검색결과 4건 처리시간 0.019초

Pressure and Flow Distribution in the Inlet Plenum of a Pebble Bed Modular Reactor (PBMR)

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.244-249
    • /
    • 2005
  • Flow distribution and pressure drop analysis for an inlet plenum of a Pebble Bed Modular Reactor (PBMR) have been performed using Computational Fluid Dynamics. Three-dimensional Navier-Stokes equations have been solved in conjunction with $k-{\epsilon}$ model as a turbulence closure. Non-uniformity in flow distribution is assessed for the reference case and parametric studies have been performed for rising channels diameter, Reynolds number and angle between the inlet ports. Also, two different shapes of the inlet plenum namely, rectangular shape and oval shape, have been analysed. The relative flow mal-distribution parameter shows that the flow distribution in the rising channels for the reference case is strongly non-uniform. As the rising channels diameter decreases, the uniformity in the flow distribution as well as the pressure drop inside the inlet plenum increases. Reynolds number is found to have no effect on the flow distribution in the rising channels for both the shapes of the inlet plenum. The increase in angle between the inlet ports makes the flow distribution in the rising channels more uniform.

  • PDF

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

Analysis of forced convection in the HTTU experiment using numerical codes

  • M.C. Potgieter;C.G. du Toit
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.959-965
    • /
    • 2024
  • The High Temperature Test Unit (HTTU) was an experimental set-up to conduct separate and integral effects tests of the Pebble Bed Modular Reactor (PBMR) core. The annular core consisted of a randomly packed bed of uniform spheres. Natural convection tests using both nitrogen and helium, and forced convection tests using nitrogen, were conducted. The maximum material temperature achieved during forced convection testing was 1200 ℃. This paper presents the numerical analysis of the flow and temperature distribution for a forced convection test using 3D CFD as well as a 1D systems-CFD computer code. Several modelling approaches are possible, ranging from a fully explicit to a semi-implicit method that relies on correlations of their associated phenomena. For the comparison between codes, the analysis was performed using a porous media approach, where the conduction and radiative heat transfer were lumped together as an effective thermal conductivity and the convective heat transfer was correlated between the solid and gas phases. The results from both codes were validated against the experimental measurements. Favourable results were obtained, in particular by the systems-CFD code with minimal computational and time requirements.