• Title/Summary/Keyword: Peat

Search Result 398, Processing Time 0.028 seconds

Information on Movement of the Phosphorus(P) Fertilizers in the Turfgrass Soils of Golf Course (골프장의 잔디 토양에서 인산 비료의 이동성 평가를 위한 정보 구축)

  • Chung, Keun-Yook;Baek, Ki-Tae;Ko, Seong-Hwan;Noh, Jae-Goan;Lee, Kyung-Ho;Woo, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.285-292
    • /
    • 2008
  • This study was initiated to evaluate the Phosphorus(P) leaching potential in the putting green soils and P uptake by the turfgrass in the golf course using the P fertilizers. The turfgrass, Floradwarf bermudagrass(Cynodon dactylon L. PERS,) was planted and grown in the mixture of sand and peat moss in this lysimeter study. Five representative P fertilizers, such as, ammonium polyphosphate (APP), monopotassium phosphate (MKP), MAP(monoammonium phosphate), 0-20-20(liquid), and concentrated superphosphate(CSP, solid) were used in this study. Based on the total P quantity of leachate collected during the whole 12 weeks, MKP and APP are the first group of P fertilizers contributing to the leaching of P, then MAP and 0-20-20 are the second group of P fertilizers causing the P leaching. Finally, CSP is the third group of P fertilizer resulting in the P leaching. However, most of P applied and collected in the lysimeter were leached during the first period of two and four weeks, compared to that of P leached during the second period of six, eight, ten, and twelve weeks. Applications of MAP, APP and CSP, MKP and 0-20-20 in order produced the largest amount of total dry matter. However, APP, MKP and MAP, CSP and 0-20-20 in order showed the largest amount of P uptake. Therefore, based on the data of P leaching, dry matter production, and plant P uptake, it appears that CSP, 0-20-20, and MAP are the environmentally sound fertilizers recommended in the turfgrass putting green soil of golf course.

Effects of Capillary Rise Interruption Layer on Salt Accumulation and Kentucky Bluegrass (Poapratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (임해 간척지에서 모래상토 층에 모세관수 차단 층의 도입이 염류 집적과 켄터키블루그래스 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Proceedings of the Turfgrass Society of Korea Conference
    • /
    • 2011.02a
    • /
    • pp.5-8
    • /
    • 2011
  • This research was conducted to determine the effect of capillary rise interruption layer on the sand based growing media when growing Kentucky bluegrass under soil reclamation and saline water irrigation. Rootzone profile consists of three layers as top soil of 30 cm, 20 cm of capillary interruption layer and 10 cm of reclaimed paddy soil. Rootzone profile was packed in column pots. The top soil was a mixture of sand dredged up from Lake Bhunam Tae Ahn, Korea and peat at the ratio of 95:5 by volume. Bottom part of column was covered with plastic net and the pots were soaked into 5 cm depth saline water reservoir with salinity $3-5dsm^{-1}$. Kentucky bluegrass was installed by sod and irrigated using $2dSm^{-1}$ saline water(5.7mm $day^{-1}$)in 3days interval. The results showed that the largest accumulation of salt in the spring with ECe of $5.4dSm^{-1}$ and SAR34.0 in rootzone with out capillary rise interruption layer and ECe of $4.6dSm^{-1}$ and SAR8.24 at rootzone using gravel as capillary rise interruption layer material. Kentucky bluegrass grown in growing media with gravel as capillary rise interruption layer resulted in the average visual quality rate of 8.1and clipping dry weight of $24.8gm^{-2}$, while Kentucky bluegrass grown in the growing media with out capillary rise interruption layer showed the visual quality rate of 7.9 and clipping dry weight of $34g.m^{-2}$. Capillary rise interruption layer of gravel and coarses and enhanced the visual quality by 4.1and 4.0%, root length by 50 and 38%, and root dryweight by 35and 17% of Kentucky bluegrass, and reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the rootzone.

  • PDF

Effects of Planting Soil on the Soil Moisture and the Growth of Vitex rotundifolia for Green Roof (옥상녹화 식재지반이 토양수분과 순비기나무의 생육에 미치는 영향)

  • Park, Jun-Suk;Park, Je-Hea;Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.98-106
    • /
    • 2010
  • This study focuses on the appropriate planting soil for Vitex rotundifolia by planting soil. Different soil depth levels were achieved at 15cm and 25cm in the green roof module system that was created with woody materials for a $500{\times}500{\times}300mm$ area. The soil mixture ratio was $S_{10}$, $L_{10}$, $S_7L_3$, $S_5L_5$, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$. This study was carried out over five months between April and September, 2006. The amount of soil moisture tends to decrease according to the planting soil. For the experimental items $S_{10}$, $S_7L_3$ and $S_5L_5$, the amount of soil moisture tends to decrease rapidly. However, for the experimental items $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$, conditions containing perlite and peat moss, the amount of moisture tends to decrease more gradually. As a result, the use of soil-improving amending for the afforestation planting of roofs with a low level of management is need. After experimenting with the ratio of soil mixture for Vitex rotundifolia, the planting soil for experimental item $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ appeared excellent. For experimental item $S_{10}$, the growth of Vitex rotundifolia seemed to be weaker than that of others, because of the low levels of moisture and organic matter in the soil. For experimental item $L_{10}$, there appeared to be a low level of growth, even when the levels of moisture and organic matter were high. This may have occurred because of the low level of soil pH and the excessive amount of exchangeable cation. At the depth of 25cm, the growth of Vitex rotundifolia is vigorous overall. For experimental item at 15cm, Vitex rotundifolia was able to survive for 14 days without any rainfall and Vitex rotundifolia was better in amended soil, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$, than natural soil, SL.

Bush Growth and Fruit Quality of 'Duke' Blueberry Influenced by Nutritional Composition in Unheated Plastic House (블루베리 '듀크' 품종의 무가온 하우스 재배에서 질소비율 조절에 따른 수체생육 및 과실품질 변화)

  • Cheon, Mi Geon;Kim, Yeong Bong;Hong, Kwang Pyo;Kumar, H.M. Prathibhani C.;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.319-325
    • /
    • 2018
  • The aim of the present study was to determine the influence of different fertilizer combinations on the growth, yield, and fruit quality of 'Duke' blueberry cultivar and the water quality of growth medium. The experiment was carried out with three year old 'Duke' blueberry bushes which were cultivated in containers ($60{\times}80{\times}40cm$) filled with 130 L peat moss and 40 L pearlite (v/v). Sawdust was used as the mulch in growth containers. Three different fertilizer combinations (FC) i.e., FC-1 consisted with standard solution, FC-2 consisted with nitrogen reduced by 10% from FC-1, and FC-3 consisted with nitrogen reduced by 20% from FC-1 were tested while, the ground water used as the control. The effects of different fertilizer combinations on shoot diameter, shoot length, number of shoots, leaf length, SPAD value (the relative content of chlorophyll), berry weight, soluble solids content, titratable acidity, and yield per bush in 'Duke' blueberry were examined. Also, the effects of different fertilizer combinations on pH, EC, $NH_4$ and $NO_3$ in 'Duke' blueberry growth medium were monitored. The highest pH and lowest EC, $NH_4$ and $NO_3$ in growth medium was recorded with control treatment during the experiment period. The maximum shoot diameter (3.7 mm) and shoot length (35.7 cm) was recorded for the FC-1. Highest number of shoots (47%) were recorded from 'Duke' blueberry bushes supplemented with FC-1 compared to other treatments. The fertilizer combinations supplemented with nitrogen showed significant influence on leaf length and SPAD value compared to control 'Duke' blueberry bushes. However, the fruit quality attributes, i.e., berry weight, soluble solids content, and titratable acidity were not significant different among fertilizer treatments. The significantly highest yields per bush were recorded for FC-1, FC-2, and FC-3, as 2.2, 2.9, and 2.7 kg, respectively compared to control (0.2 kg). Although, the FC-1 was supplemented with highest nitrogen content it resulted low yield per bush while having high number of shoots and vigorous growth.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Analysis Actual Conditions of Arid Progress and Prevention Management of Hwaeom Wetland in Yangsansi (양산시 화엄늪의 산지화 진행실태 및 예방관리 방안)

  • Lee, Soo-Dong;Kim, Sun-Hee;Kim, Ji-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.498-511
    • /
    • 2012
  • Mountainous wetland have many species such as II grade endangered species of wild flora and fauna(Drosera rotundifolia) and environmental indicator species(Utricularia racemosa, Habenaria linearifolia, Parnassia palustris, Molinia japonica, etc.). Accordingly, the mountainous wetlands is very important. However, most mountainous wetlands will disappear by natural or artificial aridness processes. Thus, it needs to manage mountainous wetland for protecting from aridness. This study has found out the wetland status of the environmental ecology and aridness processes moreover, it has suggested ways of improving wetland conservation plan and wetland aridness management plan. According to the results of topography structure survey, Hwaeom wetland's altitude is ranged within 750~810m(87.4%), and slope is less than $10^{\circ}$. There was ideally suited mountainous wetland. However, the water supply(1.6 meters depth and 0.8 meters wide) was built on under the wetland. For that reason, there was concerned about the aridness processes by sweeping away peat layer and dropping the water level. The distribution area of hygrophyte was narrowed to 6.7% whereas, woody plants and xerophytic plants was achieved a dominant position. If it leaves the situation as it is, the mountainous wetland will be developed next succession as forest ecosystem. Therefore, in order to sustain the mountainous wetland from aridness, it is set to the base direction of conservation and management as main schemes. Moreover, we have suggested that setting the vegetation conservation and management area which considering a ecological vegetation characteristics, managing the ecotone vegetation, setting the buffer zone for protection of ecological core areas, protecting the mountainous wetland indicator species and designating the management vegetation. In conclusion, in order to sustain and maintain a soundly wetland ecosystem, it needs to several management of wetlands damage factors. 1) suppression of the excessive groundwater to basin, 2) stabilization of wetland via hydrologic storage, 3) suppression of changing and transforming wetland into forest by succession via management of xerophytic plants.

A Brief Review of Soil Systematics in Germany (독일 토양분류체계 소개)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Kim, Seok-Cheol;Jang, Byoung-Choon;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • Due to diverse soil-forming environments and different purposes of the soil classification, numerous soil classification systems have been developed worldwide. The World Reference Base for Soil Resources (WRB) and the Soil Taxonomy of the United States are well-known in Korea. However, the German Soil Systematics based on somewhat different principles from the two former systems is little-known. The objective of this paper is therefore to give a short overview of the principles of the German Soil Systematics. The German Soil Systematics consists of a six-level hierarchical structure which comprises soil divisions, soil classes, soil types, soil subtypes, soil varieties, and soil subvarieties. Soils in Germany are firstly classified into one of four soil divisions according to the soil moist regime: terrestrial soils, semi-terrestrial soils, semi-subhydric/subhydric soils, and peats. Terrestrial soils are subdivided into 13 soil classes based on the stage of soil formation and the horizon differentiation. Semi-terrestrial soils are differentiated into four classes regarding the source of soil moist: groundwater, freshwater, saltwater, and seaside. Semi-subhydric/subhydric soils are subdivided into two classes: semi-subhydric and subhydric soils. Peats are classified into two classes of natural and anthropogenic origins. Classes can be compared to orders of the U.S. Taxonomy. Classes are subdivided into 29 soil types with regard to soil forming-processes for terrestrial soils, into 17 types with regard to the soil formation for semi-terrestrial soils, into five types with regard to the content of organic matter for semi-subhydric/subhydric soils, and also into five types with regard to peat-forming processes for peats. The soil mapping units in Germany are types, which can be additionally subdivided into ca. 220 subtypes, several thousands of varieties and subvarieties using detailed nuances of morphologic features of soil profile. Soil types can be compared to great groups of the U.S. Taxonomy.

Investigations on the Adsorption Characteristics of $SO_2$ Gas on Fixed Bed Manganese Nodule Column (고정(固定) 흡착층(吸着層)에서 망간단괴(團塊)의 $SO_2$ 가스 흡착(吸着) 특성(特性)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.3-12
    • /
    • 2006
  • The feasibility for the employment of manganese nodule as an adsorbent for $SO_{2}$ gas has been investigated. The specific surface area of manganese nodule particle, which used in the experiments, was ca. $221.5m^{2}/g$ and the content of sulfur in manganese nodule was observed to significantly increase after $SO_{2}$ was adsorbed on it. The EPMA for the distilled water-washed and methanol-washed manganese nodule particle after $SO_{2}$ adsorption showed that its sulfur content was slightly decreased to 14.7% and 13.1% respectively, from 15.4% before washing. The XRD analysis of manganese nodule showed that todorokite and birnessite, which are manganese oxides, and quartz and anorthite were the major mineralogical components and weak $MnSO_{4}$ peaks were detected after $SO_{2}$ was adsorbed on manganese nodule. For an comparative investigation, limestone was also tested as an adsorbent for $SO_{2}$, however, no peaks for $CaSO_{4}$ were found by XRD analysis after the adsorption of $SO_{2}$. As the size of adsorbent increased, time for breakthrough was decreased and the adsorbed amount of $SO_{2}$ was also diminished. The $SO_{2}$ adsorption was hindered when its flow rate became high and the adsorption capacity of manganese nodule was observed to be superior to that of limestone. In addition, the mixture of manganese nodule and limestone did not show an increase in the adsorption of $SO_{2}$. Finally, as the temperature was raised, the adsorbed amount of adsorbate on manganese nodule was found to be decreased.

Effect of Application Rate of a Controlled Release Fertilizer on the Changes in Medium EC and Growth of Subirrigated Vinca and Salvia (저면관수 재배에서 완효성 비료의 양이 배지의 EC 및 일일초와 살비아의 생장에 미치는 영향)

  • Kang, Jong Goo;Lee, In Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Plug seedlings of vinca (Catharanthus roseus L. 'Pacifica Punch') and salvia (Salvia splendens F. Sellow ex Roem & Schult 'Maestro') were transplanted into square plastic pots (145 mL volume) filled with a soilless growing medium. To determine the effect of application rate on the growing medium EC and growth of plants, 0, 0.5, 1.0, 1.5, 2.0 and 4.0 g per pot of a controlled release fertilizer (14-14-14 Osmocote, 14N-6.2P-11.6K) were mixed with the growing medium. Plants were subirrigated daily with tap water. In both vinca and salvia, growing medium EC increased as application rate was elevated. Growing medium EC was relatively constant over a whole crop period when the application rate was less than 1.5 g per pot, while it decreased throughout the experiment at higher application rates such as 2.0 to 4.0g per pot in both species. The greatest leaf area, plant height, and shoot dry weight of vinca were obtained when plants were fertilized with 2.0 to 4.0 g per pot of the fertilizer, resulting in a growing medium EC of $1.0{\sim}1.7dS{\cdot}m^{-1}$ throughout the experiment. Leaf area, shoot dry weight, and chlorophyll content of salvia increased with elevated application rates. Leaf area, shoot dry weight, and chlorophyll content of salvia were the greatest when plants were fertilized with 4.0 g per pot, resulting in growing medium EC of $1.0{\sim}4.0dS{\cdot}m^{-1}$ throughout the experiment. Plant height of salvia was the greatest when plants were fertilized with 2.0 to 4.0g per pot. Concentrations of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and sulfur (S) in the shoots of vinca increased, while concentration of calcium (Ca) decreased with elevated application rates. Concentrations of boron (B) and manganese (Mn) in the shoots of vinca increased as the application rate decreased.

Growth Responses of Potted Gerbera 'Sunny Lemon' under Non-Nutrient Solution Recycling System by Media and Nutrient Contents (비순환식 분화 양액재배시 배지와 양액함량에 따른 거베라 'Sunny Lemon'의 생육반응)

  • Kil, Mi-Jung;Shim, Myung-Sun;Park, Sang-Kun;Shin, Hak-Gi;Jung, Jae-A;Kwon, Young-Soon
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • To investigate the characteristics of plant growth and flower quality of gerbera 'Sunny Lemon' by amount of nutrient solution, young seedling plants, 'Sunny Lemon' were transplanted to rock-wool and medium of peat moss and perlite mixed with 1 to 2 and they were acclimatized in greenhouse during about 1 month. Nutrient solution supplied to the plants is sonneveld solution of 1/2 concentration and treatments launched June 24, 2010 when average plant height was $20{\pm}1cm$. Nutrient contents as a standard for starting point of irrigation by time domain reflectometry (TDR) were determined with 60-65%, 70-75%, and 80-85%. Results of growth during vegetative growth, plant height, leaf width and leaf number increased by 10% in rockwool, but they were not significantly different. As for plant growth depending on nutrient content, 80-85% treatment showed the highest values. Leaf number increased by 60%, and leaf width and plant height had a about 40% increase than initial growth. Effectiveness for flower quality, yield and days to flowering were superior when nutrient content of media was higher than in the others. Especially, average days to flowering in 80-85% content was advanced by 7-10 days compared to the day in 60-65% treatment. The total amount of nutrient supply per plant was higher in mixed medium than in rockwool, but change patterns of EC and pH were enhanced in rockwool. Based on our results, we recommended that growth, cut flower, and yield of gerbera 'Sunny Lemon' were more effective when nutrient content of mixed medium was maintained at 80-85%.