• Title/Summary/Keyword: Peak runoff volume

Search Result 103, Processing Time 0.026 seconds

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Application of a Grid-Based Rainfall-Runoff Model Using SRTM DEM (SRTM DEM을 이용한 격자기반 강우-유출모의)

  • Jung, In-Kyun;Park, Jong-Yoon;Park, Min-Ji;Shin, Hyung-Jin;Jeong, Hyeon-Gyo;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.157-169
    • /
    • 2010
  • In this study, the applicability of SRTM(The Shuttle Radar Topography Mission) DEM(Digital Elevation Model) which is one of the remotely sensed shuttle's radar digital elevation was tested for use as the input data in a grid-based rainfall-runoff model. The SRTM DEM and digital topographic map derived DEM(TOPO DEM) were building with 500m spatial resolution for the Chungju-Dam watershed which located in the middle east of South Korea, and stream-burning method was applied to delineate the proper flow direction for model application. Similar topographical characteristics were shown as a result of comparing elevation, flow-direction, hydrological slope, number of watershed cell, and profile between SRTM DEM and TOPO DEM. Two DEMs were tested by using a grid-based rainfall-runoff model named KIMSTORM with 6 storm events. The results also showed no significant differences in average values of relative error for both peak runoff(0.91 %) and total runoff volume(0.29 %). The results showed that the SRTM DEM has applicability like TOPO DEM for use in a grid-based rainfall-runoff modeling.

Analysis of Runoff Impact by Land Use Change - Using Grid Based Kinematic Wave Storm Runoff Model (KIMSTORM) - (토지이용의 변화가 홍수유출에 미치는 영향분석)

  • Kim, Seong-Joon;Park, Geun-Ae;Chun, Moo-Kab
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.301-311
    • /
    • 2005
  • The purpose of this study is to assess the quantitative effect of stream discharge due to land use changes. The upstream watershed of Pyeongtaek gauging station of Anseong-cheon ($592.6\;km^2$) was adopted. To accomplish the purpose, firstly, trace land use changes for the selected watershed which have some changes of land use by using Landsat images of 1986 and 1999 of the watershed and secondly, analyse the quantitative effect of stream discharge due to land use changes by applying GIS- based distributed hydrologic model KIMSTORM. The model was calibrated and verified at 2 locations (Pyeongtaek and Gongdo) by comparing observed with simulated discharge results for 7 storm events from 1998 to 2003. Model output was designed to provide information of land use impact on runoff components in the watershed and the sensitivity of impact level of each land use category on storm runoff. Land use impact was evaluated with the land use data sets for 1986 and 1999 for the same rainfall condition (160.5 mm). Area decrease of 4.8 percent of forest and 4.0 percent of paddy field during 13 years (1986 - 1999) within the watershed caused a 30.3 percent increase of peak runoff and a 9.3 percent increase of runoff volume.

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

A Study for an Automatic Calibration of Urban Runoff Model by the SCE-UA (집합체 혼합진화 알고리즘을 이용한 도시유역 홍수유출 모형의 자동 보정에 관한 연구)

  • Kang, Tae-Uk;Lee, Sang-Ho;Kang, Shin-Uk;Park, Jong-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.15-27
    • /
    • 2012
  • SWMM (Storm Water Management Model) has been widely used in the world as a typical model for flood runoff analysis of urban areas. However, the calibration of the model is difficult, which is an obstacle to easy application. The purpose of the study is to develop an automatic calibration module of the SWMM linked with SCE-UA (Shuffled Complex Evolution-University of Arizona) algorithm. Generally, various objective functions may produce different optimization results for an optimization problem. Thus, five single objective functions were applied and the most appropriate one was selected. In addition to the objective function, another objective function was used to reduce peak flow error in flood simulation. They form a multiple objective function, and the optimization problem was solved by determination of Pareto optima. The automatic calibration module was applied to the flood simulation on the catchment of the Guro 1 detention reservoir and pump station. The automatic calibration results by the multiple objective function were more excellent than the results by the single objective function for model assessment criteria including error of peak flow and ratio of volume between observed and calculated flow. Also, the verification results of the model calibrated by the multiple objective function were reliable. The program could be used in various flood runoff analysis in urban areas.

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

A Study on the Application and Design Procedure of Multi-Purpose Wet Detention Ponds for Improving Water Quality - Case Study of NamAk New Town Development Area - (다목적 저류지의 수질개선을 위한 설계과정 및 적용에 관한 연구 - 남악 신도시 개발지를 대상으로 -)

  • Woo, Chang-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The disposal of stormwater is one of the major problems in urban water management. One method of reducing peak runoff rates and other detrimental impacts of stormwater is detention storage. Detention ponds as a water quality control alternatives have been investigated by a number of researchers. Recognizing multiple roles such as flood peak attenuation, pollution removal and aesthetic enhancement, the design and management of detentions ponds deserve more research. The purpose of this research is to establish design criteria wet detention ponds to improve water quality. Water quality in detention pond discharge might be improve with physical, chemical and biological alterations. Physical alteration was focused in this study. There are several methods for estimating the suspended solid control capability of wet detention ponds. Existing models of suspended solids removal are based on sedimentation and gravity settling theory. The pollutant trap efficiency of pond is a function of several interrelating factors. Detention time is the most important factor, because it determine gravity settling quantities of pollutants. Desirable modification of physical factors for improvement of water quality in wet detention ponds are volume ratio, area ratio, length to width ratio, depth, out let location, bottom soil type. In order to apply design procedure in actual site, Namak new town development area was selected.

Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method (최적화기법에 의한 관개저수지의 실시간 홍수예측모형)

  • 문종필;김태철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.85-93
    • /
    • 2001
  • The basic concept of the model is to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting) model. The flood forecasting model developed was applied to several strom event of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

Real-time Flood Forecasting Model for the Medium and Small Watershed Using Recursive Parameter Optimization (매개변수 추적에 의한 중.소하천의 실시간 홍수예측모형)

  • Moon, Jong-Pil;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.295-299
    • /
    • 2001
  • To protect the flooding damages in Medium and Small watershed, it needs to set up flood warning system and develope Flood forecasting Model in real-time basis for medium and small watershed. In this study, it was able to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance by using simplex method recursively for the determination of the best parameters of RETFLO model. The result of RETFLO performance applied to several storm of Yugu river during 3 past years was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method (최적화기법을 이용한 관개저수지의 실시간 홍수예측모형(수공))

  • 문종필;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.390-396
    • /
    • 2000
  • The basic concept of the model is minimizing the error range between forecasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting)model. The flood forecasting model developed was applied to several strom events of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF