• 제목/요약/키워드: Peak runoff

검색결과 414건 처리시간 0.023초

토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발 (Development of lumped model to analyze the hydrological effects landuse change)

  • 손일
    • 대한지리학회지
    • /
    • 제29권3호
    • /
    • pp.233-252
    • /
    • 1994
  • 토지이용수문학을 위한 하나의 대안으로, 모형의 단순성, 모형변형의 용이성, 그리 고 모의된 모형으로부터 지속적인 유량 예측 능력을 지닌 Lumped모형을 이용해 토지이용 변화에 따른 수문특성의 변화를 추적하였다. Blackie(1972)의 모형을 근간으로, R1131(11-parameter, 3-storage, l-input option) 모형을 구축하였다. 연구 대상 유역분지는 케냐에 있는 Kimakia Catchement K11이며, 이곳의 토지이용은 3번 변화하였다. 3단계의 토 지이용 기간에 대해 모형을 보정한 결과, 모형유효도는 96.78%, 97.20%, 94.62%이며, 전체유 량오차는 각각 -1.78%, -3.36%, 5.32% 였다. 보정된 모형을 이용해 각 토지이용 단계별로 확장유출량을 발생시키고, 빈도해석을 시도했다. 홍수 규모가 작은 경우 식생변화에 따라 31.3%와 32.1% 정도로 홍수량이 줄어들었으나, 홍수 규모가 커짐에 따라 홍수량의 감소 정 도는 점차 작아지고 있다. 이와 같은 현상은 갈수량의 변화에서도 발견된다. 또한 식생이 어 느 정도까지 성장한 이후에는 계속된 식생 성장에도 불구하고 홍수량과 갈수량은 큰 변화가 없다.

  • PDF

도시(都市)와 농촌(農村)에서의 비점원(非點源) 오염물(汚染物) 배출양상(排出樣相)에 관한 연구(硏究) (A Study on the Nonpoint Pollutant Loadings in Urban and Agricultural Areas)

  • 임봉수;이병헌;최의소
    • 대한토목학회논문집
    • /
    • 제4권2호
    • /
    • pp.45-53
    • /
    • 1984
  • 본(本) 연구(硏究)는 우리 나라에 있어서의 도시(都市)와 농촌(農村)의 비점원(非點源) 오염물질(汚染物質) 배출량(排出量)과 강우시(降雨時) 유출(流出)에 따르는 농도(濃度)의 양상(樣相)을 조사(調査)하였다. 주요분석항목은 COD, BOD, SS 이었으며 1981년(年) 5월(月)부터 8일(日)까지 수행(遂行)되었다. 도시지역(都市地域)의 비점원(非點源) 오염물질(汚染物質) 배출량(排出量)은 강우강도(降雨强度)와 강우지속시간(降雨持續時間) 등이 영향을 주었는 데 초기우수(初期雨水)에서 그 농도(濃度)는 유량(流量)이 증가(增加)함에 따라 높아지는 양상(樣相)을 띤다. 또, 집중강우시(集中降雨時) 유량(流量)이 급격히 증가(增加)하더라도 그 농도(濃度)는 희석되기 때문에 그만큼 증가(增加)하지 않는다. 최대강우(最大降雨) 이후(以後) 다시 새로운 강우(降雨)가 형성(形成)될 때 오염물질(汚染物質)의 농도(濃度)는 초기강우(初期降雨) 이전(以前)의 농도(濃度)보다 낮은 경우가 있는데 이것은 하수천(河水川) 및 하수거(下水渠)에 침적된 오염물질(汚染物質)이 강우(降雨)에 의해 씻어 내려갔기 때문이다. 그러나 최대유량(最大流量) 이후(以後) 초기강우(初期降雨)보다 큰 강우강도(降雨强度)가 지속(持續)되는 경우에는 유량(流量)이 증가(增加)함에 따라 오염물질(汚染物質)의 농도(濃度)가 증가(增加)한다. 도시지역(都市地域)의 강우시(降雨時) 면적당(面積當) 비점원(非點源) 오염물질(汚染物質)의 배출량(排出量)은 COD 489.9~1.328 kg/ha/yr로 평균(平均) 690.5 kg/ha/yr이고, BOD 226.8~614.8 kg/ha/yr로 평균(平均) 319.7 kg/ha/yr이고, SS 589.7~1,598.5 kg/ha/yr로 평균(平均) 831.2 kg/ha/yr로 산출된다. 농촌지역(農村地域)에서는 침전(沈澱)되었던 생활하수(生活下水), 퇴비 침출수 및 기타 농업폐기물(農業廢棄物) 등에 의해서 오염물질(汚染物質)이 흘러나온다. 논의 경우 면적당(面積當) 비점원(非點源) 오염물질(汚染物質) 배출량(排出量)은 COD 21.7~114 kg/ha/yr로 평균(平均) 62.34 kg/ha/yr이고, BOD 9.53~34.5 kg/ha/yr로 평균(平均) 18.65 kg/ha/yr이며, SS 8.35~29.57 kg/ha/yr로 평균(平均) 16.12 kg/ha/yr로 나타났다. 한편, 경작지의 경우 COD 46.3~171.8 kg/ha/yr범위로 평균(平均) 91.9 kg/ha/yr이고, BOD 11.7~42.5 kg/ha/yr범위로 평균(平均) 22.98 kg/ha/yr이고, SS 11.4~43.4 kg/ha/yr범위로 평균(平均) 23.09로 나타났다. 축산지역(畜產地域)의 오염물질(汚染物質)은 강우시(降雨時) 가축(家畜) 및 청소수(淸掃水), 퇴비국물에 기인한다. 면적당(面積當) 비점원(非點源) 오염물질(汚染物質) 배출량(排出量)은 COD 2,489~6,658 kg/ha/yr로 평균(平均) 3,804 kg/ha/yr이고, BOD 464~2,900 kg/ha/yr로 평균(平均) 2,047 kg/ha/yr이며, SS 729~1,442 kg/ha/yr로 평균(平均) 1,149 kg/ha/yr로 나타났다. 산림지역(山林地域)의 오염물질(汚染物質)은 강우시(降雨時) 나뭇잎이 퇴적되어 형성(形成)된 유기물층(有機物層)으로부터, 침출수(浸出水)가 씻겨져 내려오는 경우이다. 면적당(面積當) 비점원(非點源) 오염물질(汚染物質)의 배출량(排出量)은 COD 5.45~18.56 kg/ha/yr로 평균(平均) 9.86 kg/ha/yr이고, BOD 1.67~7.54 kg/ha/yr로 평균(平均) 3.48 kg/ha/yr이며, SS 9.74~10.35 kg/ha/yr로 평균(平均) 4.64 kg/ha/yr로 나타났다.

  • PDF

호수내 인의 주요원으로 몬순 유입수 (Monsoon Inflow as a Major Source of In-lake Phosphorus)

  • 안광국
    • 생태와환경
    • /
    • 제33권3호통권91호
    • /
    • pp.222-229
    • /
    • 2000
  • 1993년부터 1994년 까지 대청호에서 여름몬순의 강도에 따른 인(Phosphorus)의 시 공간적 변이를 평가하였다. 연구기간동안 평균 총인은 31 µg/l 였으며, 6 µg/l에서 197 µg/l까지 변화하였다. 총인농도는 1993년 7~8월의 몬순기간동안 상류에서 가장높았으며, 주로 입자성 인으로 구성되었고, 높은 무기현탁물(NVSS)과 밀접한 관계(R2 = 0.74; p<0.001)를 보였다. 상류에서의 호수내 총인은 유입수량과 직접적인 함수관계를 보였으며, 댐으로 내려갈수록 감소경향을 보였다. 1993년 하절기에 하류에서 총인농도는 상류 최대치의 5분의 1 수준에 불과하였고, NVSS와 낮은 상관관계를 보였다. 한편 1994년의 경우 호수내 총인은 1993년에 비해 현저히 낮았으며, 낮은 시공간적 변이를 보였다. 1994년 하절기동안 상류 및 중류에서 최대 총인농도는, 1993년 동일 두지역에서의 최대값에 비해, 72%와 52%씩 낮은 반면, 하류에서 총인은 두해사이에 유사하였다. 이런 결과는 호수내 댐부근에서 인농도의 계절적 변화는 상류에 비해 유입량에 의해 미약한 영향을 받는 것을 의미한다. 1993년에 가을 수층혼합전 평균 총인농도는 수층혼합후 보다 뚜렷하게 높은 반면, 1994년은 수층혼합후 농도가 혼합전보다 높았다. 이런결과는 1993년의 경우 호수내인의 대부분은 하절기동안 외부로부터의 인부하에 기인했으며, 1994년에 호수내 인은 자체내로부터 공급된 것을 의미한다. 결론적으로, 대청호내 인농도는 여름장마의 강도에 의해 크게 결정되며, 인공호라는 큰 공간적이질성 때문에 호수내 댐 혹은 상류근처의 단일지점에서 측정된 인농도 자료는 호수전체의 계절적 특성을 파악할 때 고려되어야 한다고 사료된다.

  • PDF

단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산 (Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve)

  • 최귀열
    • 한국농공학회지
    • /
    • 제7권1호
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF